Cargando…

MicroRNA-320 inhibits cell proliferation and invasion in breast cancer cells by targeting SOX4

Dysregulation of microRNAs (miRs) can contribute to cancer development and progression. In the present study, the function and underlying molecular mechanisms of miR-320 in breast cancer tumorigenesis and progression were investigated. The results of a reverse transcription-quantitative polymerase c...

Descripción completa

Detalles Bibliográficos
Autores principales: Bai, Jun-Wen, Wang, Xia, Zhang, Ya-Feng, Yao, Guo-Dong, Liu, Hong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5754898/
https://www.ncbi.nlm.nih.gov/pubmed/29344145
http://dx.doi.org/10.3892/ol.2017.7087
Descripción
Sumario:Dysregulation of microRNAs (miRs) can contribute to cancer development and progression. In the present study, the function and underlying molecular mechanisms of miR-320 in breast cancer tumorigenesis and progression were investigated. The results of a reverse transcription-quantitative polymerase chain reaction analysis demonstrated that miR-320 was frequently downregulated in breast cancer tissues compared with adjacent normal tissues. In addition, knockdown of miR-320 in breast cancer cell lines promoted cell proliferation and invasion in vitro, whereas miR-320 overexpression had the opposite effect. Furthermore, a Dual-Luciferase reporter assay indicated that SRY-box 4 (SOX4) is a direct target of miR-320, and the restoration of SOX4 in miR-320-overexpressing cells attenuated the tumor-suppressive effects of miR-320. Collectively, these results indicated that miR-320 acts as a tumor suppressor in breast cancer tumorigenesis and progression.