Cargando…
MicroRNA-320 inhibits cell proliferation and invasion in breast cancer cells by targeting SOX4
Dysregulation of microRNAs (miRs) can contribute to cancer development and progression. In the present study, the function and underlying molecular mechanisms of miR-320 in breast cancer tumorigenesis and progression were investigated. The results of a reverse transcription-quantitative polymerase c...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5754898/ https://www.ncbi.nlm.nih.gov/pubmed/29344145 http://dx.doi.org/10.3892/ol.2017.7087 |
Sumario: | Dysregulation of microRNAs (miRs) can contribute to cancer development and progression. In the present study, the function and underlying molecular mechanisms of miR-320 in breast cancer tumorigenesis and progression were investigated. The results of a reverse transcription-quantitative polymerase chain reaction analysis demonstrated that miR-320 was frequently downregulated in breast cancer tissues compared with adjacent normal tissues. In addition, knockdown of miR-320 in breast cancer cell lines promoted cell proliferation and invasion in vitro, whereas miR-320 overexpression had the opposite effect. Furthermore, a Dual-Luciferase reporter assay indicated that SRY-box 4 (SOX4) is a direct target of miR-320, and the restoration of SOX4 in miR-320-overexpressing cells attenuated the tumor-suppressive effects of miR-320. Collectively, these results indicated that miR-320 acts as a tumor suppressor in breast cancer tumorigenesis and progression. |
---|