Cargando…

Melanoma differentiation-associated gene-7 suppresses human gastric cancer cell invasion and migration

Gastric cancer is one of the most common types of cancer in the world. Patients with gastric cancer often respond poorly to conventional chemotherapies, therefore more comprehensive therapy is required. Melanoma differentiation-associated gene-7 (MDA-7), also termed interleukin-24, is a potent tumor...

Descripción completa

Detalles Bibliográficos
Autores principales: Xu, Li, Chen, Jinyan, Lin, Wei, Chen, Jinkun, Chen, Zhiwei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5754905/
https://www.ncbi.nlm.nih.gov/pubmed/29344144
http://dx.doi.org/10.3892/ol.2017.7086
Descripción
Sumario:Gastric cancer is one of the most common types of cancer in the world. Patients with gastric cancer often respond poorly to conventional chemotherapies, therefore more comprehensive therapy is required. Melanoma differentiation-associated gene-7 (MDA-7), also termed interleukin-24, is a potent tumor suppressor gene. Numerous studies have demonstrated that MDA-7 suppresses the growth and induces the apoptosis of cancer cells. In the present study, the MDA-7 gene was transfected into human gastric cancer AGS cells using adenovirus. Transwell and wound healing assays were performed to evaluate AGS cell invasion and migration, respectively. Western blotting was used to detect the expression of epithelial (E)-cadherin, cluster of differentiation (CD)44 and matrix metalloproteinase (MMP)-2 and MMP-9 proteins. A recombinant virus package was successfully constructed, and it was verified using western blotting that exogenous MDA-7 was highly expressed in the AGS cells. MDA-7 overexpression inhibited invasion and migration, decreased CD44, MMP-2 and MMP-9 expression, and increased epithelial (E-)cadherin expression in the AGS cells. Results of the present study revealed that MDA-7 inhibits gastric cancer invasion and metastasis by inhibiting CD44, MMP-2 and MMP-9 expression and by promoting E-cadherin expression.