Cargando…

Hepatoma-derived growth factor functions as an unfavorable prognostic marker of human gliomas

Hepatoma-derived growth factor (HDGF) regulates various cellular processes involved in the onset and development of tumors. To evaluate the role of HDGF in human gliomas, western blotting analysis, immunohistochemistry staining and reverse transcription-quantitative polymerase chain reaction were pe...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Yang, Liang, Shengru, Li, Yuqian, Gao, Fei, Zheng, Longlong, Tian, Shilai, Yang, Pu, Li, Lihong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5754909/
https://www.ncbi.nlm.nih.gov/pubmed/29344149
http://dx.doi.org/10.3892/ol.2017.7180
Descripción
Sumario:Hepatoma-derived growth factor (HDGF) regulates various cellular processes involved in the onset and development of tumors. To evaluate the role of HDGF in human gliomas, western blotting analysis, immunohistochemistry staining and reverse transcription-quantitative polymerase chain reaction were performed to detect HDGF protein and mRNA expression levels in glioma and intractable epileptic brain tissue. Various clinicopathological characteristics, including age, gender, World health Organization grade, HDGF expression level, Karnofsky performance Status (KPS) and Ki-67 index were obtained from medical records. The correlation between HDGF expression and these clinicopathological characteristics was statistically evaluated. Following this, multivariate liner regression was used to evaluate their effect on patient survival time. HDGF expression, at the protein and mRNA levels, was observed to be more upregulated in glioma tissues compared with intractable epileptic brain tissue without tumor. Furthermore, the level of HDGF expression was positively associated with the grade of malignancy [grades II~IV, Ki-67 index ≥20% or KPS <80 (P<0.05)] and poor prognosis in glioma patients. Notably, the univariate survival analysis identified a negative correlation between HDGF-expression and survival time (P<0.01) and multivariate liner regression demonstrated that HDGF expression is an independent prognostic factor for gliomas (P=0.01). Overall, HDGF upregulation may be a crucial step in the development and invasion of glioma. Further survival analysis highlighted its prognostic value for this malignancy, implying its potential as a promising therapeutic target for gliomas.