Cargando…
MiR-20a-5p suppresses tumor proliferation by targeting autophagy-related gene 7 in neuroblastoma
BACKGROUND: Neuroblastoma (NB) is the most common malignant tumor originating from the extracranial sympathetic nervous system in children. The molecular mechanisms underlying this disease are complex, and not completely understood. METHODS: Quantitative real-time PCR (qRT-PCR) was applied to quanti...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5755308/ https://www.ncbi.nlm.nih.gov/pubmed/29311760 http://dx.doi.org/10.1186/s12935-017-0499-2 |
Sumario: | BACKGROUND: Neuroblastoma (NB) is the most common malignant tumor originating from the extracranial sympathetic nervous system in children. The molecular mechanisms underlying this disease are complex, and not completely understood. METHODS: Quantitative real-time PCR (qRT-PCR) was applied to quantify the expression of miR-20a-5p and its target gene ATG7 in clinical NB tissues. The biological function of miR-20a-5p and ATG7 in SH-SY5Y cells was investigated through in vitro studies (Real-Time cell kinetic analyzer, colony formation assay, caspase-Glo 3/7 assay and western blotting). The luciferase reporter assay was conducted to verify the biological relationship between miR-20a-5p and ATG7. RESULTS: Here we found that miR-20a-5p expression was significantly downregulated whereas its target autophagy-related gene 7 (ATG7) was increased along with clinical staging of NB progression. Correlation analysis showed that miR-20a-5p had a negative correlation trend with ATG7. In SH-SY5Y cells, forced expression of miR-20a-5p suppressed ATG7 expression, autophagy initiation and cellular proliferation while promoted apoptosis, suggesting a potential association between miR-20a-5p and ATG7. Further bioinformatic target prediction combined with protein expression and luciferase reporter assay verified that miR-20a-5p inhibited ATG7 by directly binding to its 3′-UTR, confirming the involvement of miR-20a-5p in the regulation of ATG7 in NB. CONCLUSIONS: These results clarified that miR-20a-5p inhibited cell proliferation and promoted apoptosis through negative regulation of ATG7 and thus autophagy suppression in SH-SY5Y cells. Therefore, defining the context-specific roles of autophagy in NB and regulatory mechanisms involved will be critical for developing autophagy-targeted therapeutics against NB. Both miR-20a-5p and ATG7 would be potential therapeutic targets for future NB treatment. |
---|