Cargando…
Proper Positioning and Restraint of a Rat Hind Limb for Focused High Resolution Imaging of Bone Micro-architecture Using In Vivo Micro-computed Tomography
The use of in vivo micro-computed tomography (µCT) is a powerful tool which involves the non-destructive imaging of internal structures at high resolutions in live animal models. This allows for repeated imaging of the same rodent over time. This feature not only reduces the total number of rodents...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MyJove Corporation
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5755470/ https://www.ncbi.nlm.nih.gov/pubmed/29286365 http://dx.doi.org/10.3791/56346 |
Sumario: | The use of in vivo micro-computed tomography (µCT) is a powerful tool which involves the non-destructive imaging of internal structures at high resolutions in live animal models. This allows for repeated imaging of the same rodent over time. This feature not only reduces the total number of rodents required in an experimental design and thereby reduces the inter-subject variation that can arise, but also allows researchers to assess longitudinal or life-long responses to an intervention. To acquire high quality images that can be processed and analyzed to more accurately quantify outcomes of bone micro-architecture, users of in vivo µCT scanners must properly anesthetize the rat, and position and restrain the hind limb. To do this, it is imperative that the rat be anesthetized to a level of complete relaxation, and that pedal reflexes are lost. These guidelines may be modified for each individual rat, as the rate of isoflurane metabolism can vary depending on strain and body size. Proper technique for in vivo µCT image acquisition enables accurate and consistent measurement of bone micro-architecture within and across studies. |
---|