Cargando…
3D Ultrasound Imaging: Fast and Cost-effective Morphometry of Musculoskeletal Tissue
The developmental goal of 3D ultrasound imaging (3DUS) is to engineer a modality to perform 3D morphological ultrasound analysis of human muscles. 3DUS images are constructed from calibrated freehand 2D B-mode ultrasound images, which are positioned into a voxel array. Ultrasound (US) imaging allows...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MyJove Corporation
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5755508/ https://www.ncbi.nlm.nih.gov/pubmed/29286445 http://dx.doi.org/10.3791/55943 |
_version_ | 1783290598463111168 |
---|---|
author | Weide, Guido van der Zwaard, Stephan Huijing, Peter A. Jaspers, Richard T. Harlaar, Jaap |
author_facet | Weide, Guido van der Zwaard, Stephan Huijing, Peter A. Jaspers, Richard T. Harlaar, Jaap |
author_sort | Weide, Guido |
collection | PubMed |
description | The developmental goal of 3D ultrasound imaging (3DUS) is to engineer a modality to perform 3D morphological ultrasound analysis of human muscles. 3DUS images are constructed from calibrated freehand 2D B-mode ultrasound images, which are positioned into a voxel array. Ultrasound (US) imaging allows quantification of muscle size, fascicle length, and angle of pennation. These morphological variables are important determinants of muscle force and length range of force exertion. The presented protocol describes an approach to determine volume and fascicle length of m. vastus lateralis and m. gastrocnemius medialis. 3DUS facilitates standardization using 3D anatomical references. This approach provides a fast and cost-effective approach for quantifying 3D morphology in skeletal muscles. In healthcare and sports, information on the morphometry of muscles is very valuable in diagnostics and/or follow-up evaluations after treatment or training. |
format | Online Article Text |
id | pubmed-5755508 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | MyJove Corporation |
record_format | MEDLINE/PubMed |
spelling | pubmed-57555082018-01-19 3D Ultrasound Imaging: Fast and Cost-effective Morphometry of Musculoskeletal Tissue Weide, Guido van der Zwaard, Stephan Huijing, Peter A. Jaspers, Richard T. Harlaar, Jaap J Vis Exp Medicine The developmental goal of 3D ultrasound imaging (3DUS) is to engineer a modality to perform 3D morphological ultrasound analysis of human muscles. 3DUS images are constructed from calibrated freehand 2D B-mode ultrasound images, which are positioned into a voxel array. Ultrasound (US) imaging allows quantification of muscle size, fascicle length, and angle of pennation. These morphological variables are important determinants of muscle force and length range of force exertion. The presented protocol describes an approach to determine volume and fascicle length of m. vastus lateralis and m. gastrocnemius medialis. 3DUS facilitates standardization using 3D anatomical references. This approach provides a fast and cost-effective approach for quantifying 3D morphology in skeletal muscles. In healthcare and sports, information on the morphometry of muscles is very valuable in diagnostics and/or follow-up evaluations after treatment or training. MyJove Corporation 2017-11-27 /pmc/articles/PMC5755508/ /pubmed/29286445 http://dx.doi.org/10.3791/55943 Text en Copyright © 2017, Journal of Visualized Experiments http://creativecommons.org/licenses/by-nc-nd/3.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visithttp://creativecommons.org/licenses/by-nc-nd/3.0/ |
spellingShingle | Medicine Weide, Guido van der Zwaard, Stephan Huijing, Peter A. Jaspers, Richard T. Harlaar, Jaap 3D Ultrasound Imaging: Fast and Cost-effective Morphometry of Musculoskeletal Tissue |
title | 3D Ultrasound Imaging: Fast and Cost-effective Morphometry of Musculoskeletal Tissue |
title_full | 3D Ultrasound Imaging: Fast and Cost-effective Morphometry of Musculoskeletal Tissue |
title_fullStr | 3D Ultrasound Imaging: Fast and Cost-effective Morphometry of Musculoskeletal Tissue |
title_full_unstemmed | 3D Ultrasound Imaging: Fast and Cost-effective Morphometry of Musculoskeletal Tissue |
title_short | 3D Ultrasound Imaging: Fast and Cost-effective Morphometry of Musculoskeletal Tissue |
title_sort | 3d ultrasound imaging: fast and cost-effective morphometry of musculoskeletal tissue |
topic | Medicine |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5755508/ https://www.ncbi.nlm.nih.gov/pubmed/29286445 http://dx.doi.org/10.3791/55943 |
work_keys_str_mv | AT weideguido 3dultrasoundimagingfastandcosteffectivemorphometryofmusculoskeletaltissue AT vanderzwaardstephan 3dultrasoundimagingfastandcosteffectivemorphometryofmusculoskeletaltissue AT huijingpetera 3dultrasoundimagingfastandcosteffectivemorphometryofmusculoskeletaltissue AT jaspersrichardt 3dultrasoundimagingfastandcosteffectivemorphometryofmusculoskeletaltissue AT harlaarjaap 3dultrasoundimagingfastandcosteffectivemorphometryofmusculoskeletaltissue |