Cargando…

Phase transition and magnetocaloric properties of Mn(50)Ni(42−x)Co(x)Sn(8) (0 ≤ x ≤ 10) melt-spun ribbons

The characteristics of magnetostructural coupling play a crucial role in the magnetic field-driven behaviour of magnetofunctional alloys. The availability of magnetostructural coupling over a broad temperature range is of great significance for scientific and technological purposes. This work demons...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Zongbin, Jiang, Yiwen, Li, Zhenzhuang, Sánchez Valdés, César Fidel, Sánchez Llamazares, José Luis, Yang, Bo, Zhang, Yudong, Esling, Claude, Zhao, Xiang, Zuo, Liang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: International Union of Crystallography 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5755577/
https://www.ncbi.nlm.nih.gov/pubmed/29354271
http://dx.doi.org/10.1107/S2052252517016220
_version_ 1783290603631542272
author Li, Zongbin
Jiang, Yiwen
Li, Zhenzhuang
Sánchez Valdés, César Fidel
Sánchez Llamazares, José Luis
Yang, Bo
Zhang, Yudong
Esling, Claude
Zhao, Xiang
Zuo, Liang
author_facet Li, Zongbin
Jiang, Yiwen
Li, Zhenzhuang
Sánchez Valdés, César Fidel
Sánchez Llamazares, José Luis
Yang, Bo
Zhang, Yudong
Esling, Claude
Zhao, Xiang
Zuo, Liang
author_sort Li, Zongbin
collection PubMed
description The characteristics of magnetostructural coupling play a crucial role in the magnetic field-driven behaviour of magnetofunctional alloys. The availability of magnetostructural coupling over a broad temperature range is of great significance for scientific and technological purposes. This work demonstrates that strong magnetostrucural coupling can be achieved over a wide temperature range (222 to 355 K) in Co-doped high Mn-content Mn(50)Ni(42−x)Co(x)Sn(8) (0 ≤ x ≤ 10) melt-spun ribbons. It is shown that, over a wide composition range with Co content from 3 to 9 at.%, the paramagnetic austenite first transforms into ferromagnetic austenite at T (C) on cooling, then the ferromagnetic austenite further transforms into a weakly magnetic martensite at T (M). Such strong magnetostructural coupling enables the ribbons to exhibit field-induced inverse martensitic transformation behaviour and a large magnetocaloric effect. Under a field change of 5 T, a maximum magnetic entropy change ΔS (M) of 18.6 J kg(−1) K(−1) and an effective refrigerant capacity RC (eff) of up to 178 J kg(−1) can be achieved, which are comparable with or even superior to those of Ni-rich Ni–Mn-based polycrystalline bulk alloys. The combination of high performance and low cost makes Mn–Ni–Co–Sn ribbons of great interest as potential candidates for magnetic refrigeration.
format Online
Article
Text
id pubmed-5755577
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher International Union of Crystallography
record_format MEDLINE/PubMed
spelling pubmed-57555772018-01-19 Phase transition and magnetocaloric properties of Mn(50)Ni(42−x)Co(x)Sn(8) (0 ≤ x ≤ 10) melt-spun ribbons Li, Zongbin Jiang, Yiwen Li, Zhenzhuang Sánchez Valdés, César Fidel Sánchez Llamazares, José Luis Yang, Bo Zhang, Yudong Esling, Claude Zhao, Xiang Zuo, Liang IUCrJ Research Papers The characteristics of magnetostructural coupling play a crucial role in the magnetic field-driven behaviour of magnetofunctional alloys. The availability of magnetostructural coupling over a broad temperature range is of great significance for scientific and technological purposes. This work demonstrates that strong magnetostrucural coupling can be achieved over a wide temperature range (222 to 355 K) in Co-doped high Mn-content Mn(50)Ni(42−x)Co(x)Sn(8) (0 ≤ x ≤ 10) melt-spun ribbons. It is shown that, over a wide composition range with Co content from 3 to 9 at.%, the paramagnetic austenite first transforms into ferromagnetic austenite at T (C) on cooling, then the ferromagnetic austenite further transforms into a weakly magnetic martensite at T (M). Such strong magnetostructural coupling enables the ribbons to exhibit field-induced inverse martensitic transformation behaviour and a large magnetocaloric effect. Under a field change of 5 T, a maximum magnetic entropy change ΔS (M) of 18.6 J kg(−1) K(−1) and an effective refrigerant capacity RC (eff) of up to 178 J kg(−1) can be achieved, which are comparable with or even superior to those of Ni-rich Ni–Mn-based polycrystalline bulk alloys. The combination of high performance and low cost makes Mn–Ni–Co–Sn ribbons of great interest as potential candidates for magnetic refrigeration. International Union of Crystallography 2018-01-01 /pmc/articles/PMC5755577/ /pubmed/29354271 http://dx.doi.org/10.1107/S2052252517016220 Text en © Zongbin Li et al. 2018 http://creativecommons.org/licenses/by/2.0/uk/ This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.http://creativecommons.org/licenses/by/2.0/uk/
spellingShingle Research Papers
Li, Zongbin
Jiang, Yiwen
Li, Zhenzhuang
Sánchez Valdés, César Fidel
Sánchez Llamazares, José Luis
Yang, Bo
Zhang, Yudong
Esling, Claude
Zhao, Xiang
Zuo, Liang
Phase transition and magnetocaloric properties of Mn(50)Ni(42−x)Co(x)Sn(8) (0 ≤ x ≤ 10) melt-spun ribbons
title Phase transition and magnetocaloric properties of Mn(50)Ni(42−x)Co(x)Sn(8) (0 ≤ x ≤ 10) melt-spun ribbons
title_full Phase transition and magnetocaloric properties of Mn(50)Ni(42−x)Co(x)Sn(8) (0 ≤ x ≤ 10) melt-spun ribbons
title_fullStr Phase transition and magnetocaloric properties of Mn(50)Ni(42−x)Co(x)Sn(8) (0 ≤ x ≤ 10) melt-spun ribbons
title_full_unstemmed Phase transition and magnetocaloric properties of Mn(50)Ni(42−x)Co(x)Sn(8) (0 ≤ x ≤ 10) melt-spun ribbons
title_short Phase transition and magnetocaloric properties of Mn(50)Ni(42−x)Co(x)Sn(8) (0 ≤ x ≤ 10) melt-spun ribbons
title_sort phase transition and magnetocaloric properties of mn(50)ni(42−x)co(x)sn(8) (0 ≤ x ≤ 10) melt-spun ribbons
topic Research Papers
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5755577/
https://www.ncbi.nlm.nih.gov/pubmed/29354271
http://dx.doi.org/10.1107/S2052252517016220
work_keys_str_mv AT lizongbin phasetransitionandmagnetocaloricpropertiesofmn50ni42xcoxsn80x10meltspunribbons
AT jiangyiwen phasetransitionandmagnetocaloricpropertiesofmn50ni42xcoxsn80x10meltspunribbons
AT lizhenzhuang phasetransitionandmagnetocaloricpropertiesofmn50ni42xcoxsn80x10meltspunribbons
AT sanchezvaldescesarfidel phasetransitionandmagnetocaloricpropertiesofmn50ni42xcoxsn80x10meltspunribbons
AT sanchezllamazaresjoseluis phasetransitionandmagnetocaloricpropertiesofmn50ni42xcoxsn80x10meltspunribbons
AT yangbo phasetransitionandmagnetocaloricpropertiesofmn50ni42xcoxsn80x10meltspunribbons
AT zhangyudong phasetransitionandmagnetocaloricpropertiesofmn50ni42xcoxsn80x10meltspunribbons
AT eslingclaude phasetransitionandmagnetocaloricpropertiesofmn50ni42xcoxsn80x10meltspunribbons
AT zhaoxiang phasetransitionandmagnetocaloricpropertiesofmn50ni42xcoxsn80x10meltspunribbons
AT zuoliang phasetransitionandmagnetocaloricpropertiesofmn50ni42xcoxsn80x10meltspunribbons