Cargando…
Phase transition and magnetocaloric properties of Mn(50)Ni(42−x)Co(x)Sn(8) (0 ≤ x ≤ 10) melt-spun ribbons
The characteristics of magnetostructural coupling play a crucial role in the magnetic field-driven behaviour of magnetofunctional alloys. The availability of magnetostructural coupling over a broad temperature range is of great significance for scientific and technological purposes. This work demons...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
International Union of Crystallography
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5755577/ https://www.ncbi.nlm.nih.gov/pubmed/29354271 http://dx.doi.org/10.1107/S2052252517016220 |
_version_ | 1783290603631542272 |
---|---|
author | Li, Zongbin Jiang, Yiwen Li, Zhenzhuang Sánchez Valdés, César Fidel Sánchez Llamazares, José Luis Yang, Bo Zhang, Yudong Esling, Claude Zhao, Xiang Zuo, Liang |
author_facet | Li, Zongbin Jiang, Yiwen Li, Zhenzhuang Sánchez Valdés, César Fidel Sánchez Llamazares, José Luis Yang, Bo Zhang, Yudong Esling, Claude Zhao, Xiang Zuo, Liang |
author_sort | Li, Zongbin |
collection | PubMed |
description | The characteristics of magnetostructural coupling play a crucial role in the magnetic field-driven behaviour of magnetofunctional alloys. The availability of magnetostructural coupling over a broad temperature range is of great significance for scientific and technological purposes. This work demonstrates that strong magnetostrucural coupling can be achieved over a wide temperature range (222 to 355 K) in Co-doped high Mn-content Mn(50)Ni(42−x)Co(x)Sn(8) (0 ≤ x ≤ 10) melt-spun ribbons. It is shown that, over a wide composition range with Co content from 3 to 9 at.%, the paramagnetic austenite first transforms into ferromagnetic austenite at T (C) on cooling, then the ferromagnetic austenite further transforms into a weakly magnetic martensite at T (M). Such strong magnetostructural coupling enables the ribbons to exhibit field-induced inverse martensitic transformation behaviour and a large magnetocaloric effect. Under a field change of 5 T, a maximum magnetic entropy change ΔS (M) of 18.6 J kg(−1) K(−1) and an effective refrigerant capacity RC (eff) of up to 178 J kg(−1) can be achieved, which are comparable with or even superior to those of Ni-rich Ni–Mn-based polycrystalline bulk alloys. The combination of high performance and low cost makes Mn–Ni–Co–Sn ribbons of great interest as potential candidates for magnetic refrigeration. |
format | Online Article Text |
id | pubmed-5755577 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | International Union of Crystallography |
record_format | MEDLINE/PubMed |
spelling | pubmed-57555772018-01-19 Phase transition and magnetocaloric properties of Mn(50)Ni(42−x)Co(x)Sn(8) (0 ≤ x ≤ 10) melt-spun ribbons Li, Zongbin Jiang, Yiwen Li, Zhenzhuang Sánchez Valdés, César Fidel Sánchez Llamazares, José Luis Yang, Bo Zhang, Yudong Esling, Claude Zhao, Xiang Zuo, Liang IUCrJ Research Papers The characteristics of magnetostructural coupling play a crucial role in the magnetic field-driven behaviour of magnetofunctional alloys. The availability of magnetostructural coupling over a broad temperature range is of great significance for scientific and technological purposes. This work demonstrates that strong magnetostrucural coupling can be achieved over a wide temperature range (222 to 355 K) in Co-doped high Mn-content Mn(50)Ni(42−x)Co(x)Sn(8) (0 ≤ x ≤ 10) melt-spun ribbons. It is shown that, over a wide composition range with Co content from 3 to 9 at.%, the paramagnetic austenite first transforms into ferromagnetic austenite at T (C) on cooling, then the ferromagnetic austenite further transforms into a weakly magnetic martensite at T (M). Such strong magnetostructural coupling enables the ribbons to exhibit field-induced inverse martensitic transformation behaviour and a large magnetocaloric effect. Under a field change of 5 T, a maximum magnetic entropy change ΔS (M) of 18.6 J kg(−1) K(−1) and an effective refrigerant capacity RC (eff) of up to 178 J kg(−1) can be achieved, which are comparable with or even superior to those of Ni-rich Ni–Mn-based polycrystalline bulk alloys. The combination of high performance and low cost makes Mn–Ni–Co–Sn ribbons of great interest as potential candidates for magnetic refrigeration. International Union of Crystallography 2018-01-01 /pmc/articles/PMC5755577/ /pubmed/29354271 http://dx.doi.org/10.1107/S2052252517016220 Text en © Zongbin Li et al. 2018 http://creativecommons.org/licenses/by/2.0/uk/ This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.http://creativecommons.org/licenses/by/2.0/uk/ |
spellingShingle | Research Papers Li, Zongbin Jiang, Yiwen Li, Zhenzhuang Sánchez Valdés, César Fidel Sánchez Llamazares, José Luis Yang, Bo Zhang, Yudong Esling, Claude Zhao, Xiang Zuo, Liang Phase transition and magnetocaloric properties of Mn(50)Ni(42−x)Co(x)Sn(8) (0 ≤ x ≤ 10) melt-spun ribbons |
title | Phase transition and magnetocaloric properties of Mn(50)Ni(42−x)Co(x)Sn(8) (0 ≤ x ≤ 10) melt-spun ribbons |
title_full | Phase transition and magnetocaloric properties of Mn(50)Ni(42−x)Co(x)Sn(8) (0 ≤ x ≤ 10) melt-spun ribbons |
title_fullStr | Phase transition and magnetocaloric properties of Mn(50)Ni(42−x)Co(x)Sn(8) (0 ≤ x ≤ 10) melt-spun ribbons |
title_full_unstemmed | Phase transition and magnetocaloric properties of Mn(50)Ni(42−x)Co(x)Sn(8) (0 ≤ x ≤ 10) melt-spun ribbons |
title_short | Phase transition and magnetocaloric properties of Mn(50)Ni(42−x)Co(x)Sn(8) (0 ≤ x ≤ 10) melt-spun ribbons |
title_sort | phase transition and magnetocaloric properties of mn(50)ni(42−x)co(x)sn(8) (0 ≤ x ≤ 10) melt-spun ribbons |
topic | Research Papers |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5755577/ https://www.ncbi.nlm.nih.gov/pubmed/29354271 http://dx.doi.org/10.1107/S2052252517016220 |
work_keys_str_mv | AT lizongbin phasetransitionandmagnetocaloricpropertiesofmn50ni42xcoxsn80x10meltspunribbons AT jiangyiwen phasetransitionandmagnetocaloricpropertiesofmn50ni42xcoxsn80x10meltspunribbons AT lizhenzhuang phasetransitionandmagnetocaloricpropertiesofmn50ni42xcoxsn80x10meltspunribbons AT sanchezvaldescesarfidel phasetransitionandmagnetocaloricpropertiesofmn50ni42xcoxsn80x10meltspunribbons AT sanchezllamazaresjoseluis phasetransitionandmagnetocaloricpropertiesofmn50ni42xcoxsn80x10meltspunribbons AT yangbo phasetransitionandmagnetocaloricpropertiesofmn50ni42xcoxsn80x10meltspunribbons AT zhangyudong phasetransitionandmagnetocaloricpropertiesofmn50ni42xcoxsn80x10meltspunribbons AT eslingclaude phasetransitionandmagnetocaloricpropertiesofmn50ni42xcoxsn80x10meltspunribbons AT zhaoxiang phasetransitionandmagnetocaloricpropertiesofmn50ni42xcoxsn80x10meltspunribbons AT zuoliang phasetransitionandmagnetocaloricpropertiesofmn50ni42xcoxsn80x10meltspunribbons |