Cargando…
3D Mitochondrial Ultrastructure of Drosophila Indirect Flight Muscle Revealed by Serial-section Electron Tomography
Mitochondria are cellular powerhouses that produce ATP, lipids, and metabolites, as well as regulate calcium homeostasis and cell death. The unique cristae-rich double membrane ultrastructure of this organelle is elegantly arranged to carry out multiple functions by partitioning biomolecules. Mitoch...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MyJove Corporation
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5755607/ https://www.ncbi.nlm.nih.gov/pubmed/29286480 http://dx.doi.org/10.3791/56567 |
Sumario: | Mitochondria are cellular powerhouses that produce ATP, lipids, and metabolites, as well as regulate calcium homeostasis and cell death. The unique cristae-rich double membrane ultrastructure of this organelle is elegantly arranged to carry out multiple functions by partitioning biomolecules. Mitochondrial ultrastructure is intimately linked with various functions; however, the fine details of these structure-function relationships are only beginning to be described. Here, we demonstrate the application of serial-section electron tomography to elucidate mitochondrial structure in Drosophila indirect flight muscle. Serial-section electron tomography may be adapted to study any cellular structure in three-dimensions. |
---|