Cargando…
Risk assessment and spread of the potentially invasive Ceratitis rosa Karsch and Ceratitis quilicii De Meyer, Mwatawala & Virgilio sp. Nov. using life-cycle simulation models: Implications for phytosanitary measures and management
Integrative taxonomy has resolved the species status of the potentially invasive Ceratitis rosa Karsch into two separate species with distinct ecological requirements: C. rosa “lowland type” and the newly described species Ceratitis quilicii De Meyer, Mwatawala & Virgilio sp. nov. “highland type...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5755740/ https://www.ncbi.nlm.nih.gov/pubmed/29304084 http://dx.doi.org/10.1371/journal.pone.0189138 |
_version_ | 1783290624330432512 |
---|---|
author | Tanga, Chrysantus Mbi Khamis, Fathiya Mbarak Tonnang, Henri E. Z. Rwomushana, Ivan Mosomtai, Gladys Mohamed, Samira A. Ekesi, Sunday |
author_facet | Tanga, Chrysantus Mbi Khamis, Fathiya Mbarak Tonnang, Henri E. Z. Rwomushana, Ivan Mosomtai, Gladys Mohamed, Samira A. Ekesi, Sunday |
author_sort | Tanga, Chrysantus Mbi |
collection | PubMed |
description | Integrative taxonomy has resolved the species status of the potentially invasive Ceratitis rosa Karsch into two separate species with distinct ecological requirements: C. rosa “lowland type” and the newly described species Ceratitis quilicii De Meyer, Mwatawala & Virgilio sp. nov. “highland type”. Both species are tephritid pests threatening the production of horticultural crops in Africa and beyond. Studies were carried out by constructing thermal reaction norms for each life stage of both species at constant and fluctuating temperatures. Non-linear functions were fitted to continuously model species development, mortality, longevity and oviposition to establish phenology models that were stochastically simulated to estimate the life table parameters of each species. For spatial analysis of pest risk, three generic risk indices were visualized using the advanced Insect Life Cycle Modeling software. The study revealed that the highest fecundity, intrinsic rate of natural increase and net reproductive rate for C. rosa and C. quilicii was at 25 and 30°C, respectively. The resulting model successfully fits the known distribution of C. rosa and C. quilicii in Africa and the two Indian Ocean islands of La Réunion and Mauritius. Globally, the model highlights the substantial invasion risk posed by C. rosa and C. quilicii to cropping regions in the Americas, Australia, India, China, Southeast Asia, Europe, and West and Central Africa. However, the proportion of the regions predicted to be climatically suitable for both pests is narrower for C. rosa in comparison with C. quilicii, suggesting that C. quilicii will be more tolerant to a wider range of climatic conditions than C. rosa. This implies that these pests are of significant concern to biosecurity agencies in the uninvaded regions. Therefore, these findings provide important information to enhance monitoring/surveillance and designing pest management strategies to limit the spread and reduce their impact in the invaded range. |
format | Online Article Text |
id | pubmed-5755740 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-57557402018-01-26 Risk assessment and spread of the potentially invasive Ceratitis rosa Karsch and Ceratitis quilicii De Meyer, Mwatawala & Virgilio sp. Nov. using life-cycle simulation models: Implications for phytosanitary measures and management Tanga, Chrysantus Mbi Khamis, Fathiya Mbarak Tonnang, Henri E. Z. Rwomushana, Ivan Mosomtai, Gladys Mohamed, Samira A. Ekesi, Sunday PLoS One Research Article Integrative taxonomy has resolved the species status of the potentially invasive Ceratitis rosa Karsch into two separate species with distinct ecological requirements: C. rosa “lowland type” and the newly described species Ceratitis quilicii De Meyer, Mwatawala & Virgilio sp. nov. “highland type”. Both species are tephritid pests threatening the production of horticultural crops in Africa and beyond. Studies were carried out by constructing thermal reaction norms for each life stage of both species at constant and fluctuating temperatures. Non-linear functions were fitted to continuously model species development, mortality, longevity and oviposition to establish phenology models that were stochastically simulated to estimate the life table parameters of each species. For spatial analysis of pest risk, three generic risk indices were visualized using the advanced Insect Life Cycle Modeling software. The study revealed that the highest fecundity, intrinsic rate of natural increase and net reproductive rate for C. rosa and C. quilicii was at 25 and 30°C, respectively. The resulting model successfully fits the known distribution of C. rosa and C. quilicii in Africa and the two Indian Ocean islands of La Réunion and Mauritius. Globally, the model highlights the substantial invasion risk posed by C. rosa and C. quilicii to cropping regions in the Americas, Australia, India, China, Southeast Asia, Europe, and West and Central Africa. However, the proportion of the regions predicted to be climatically suitable for both pests is narrower for C. rosa in comparison with C. quilicii, suggesting that C. quilicii will be more tolerant to a wider range of climatic conditions than C. rosa. This implies that these pests are of significant concern to biosecurity agencies in the uninvaded regions. Therefore, these findings provide important information to enhance monitoring/surveillance and designing pest management strategies to limit the spread and reduce their impact in the invaded range. Public Library of Science 2018-01-05 /pmc/articles/PMC5755740/ /pubmed/29304084 http://dx.doi.org/10.1371/journal.pone.0189138 Text en © 2018 Tanga et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Tanga, Chrysantus Mbi Khamis, Fathiya Mbarak Tonnang, Henri E. Z. Rwomushana, Ivan Mosomtai, Gladys Mohamed, Samira A. Ekesi, Sunday Risk assessment and spread of the potentially invasive Ceratitis rosa Karsch and Ceratitis quilicii De Meyer, Mwatawala & Virgilio sp. Nov. using life-cycle simulation models: Implications for phytosanitary measures and management |
title | Risk assessment and spread of the potentially invasive Ceratitis rosa Karsch and Ceratitis quilicii De Meyer, Mwatawala & Virgilio sp. Nov. using life-cycle simulation models: Implications for phytosanitary measures and management |
title_full | Risk assessment and spread of the potentially invasive Ceratitis rosa Karsch and Ceratitis quilicii De Meyer, Mwatawala & Virgilio sp. Nov. using life-cycle simulation models: Implications for phytosanitary measures and management |
title_fullStr | Risk assessment and spread of the potentially invasive Ceratitis rosa Karsch and Ceratitis quilicii De Meyer, Mwatawala & Virgilio sp. Nov. using life-cycle simulation models: Implications for phytosanitary measures and management |
title_full_unstemmed | Risk assessment and spread of the potentially invasive Ceratitis rosa Karsch and Ceratitis quilicii De Meyer, Mwatawala & Virgilio sp. Nov. using life-cycle simulation models: Implications for phytosanitary measures and management |
title_short | Risk assessment and spread of the potentially invasive Ceratitis rosa Karsch and Ceratitis quilicii De Meyer, Mwatawala & Virgilio sp. Nov. using life-cycle simulation models: Implications for phytosanitary measures and management |
title_sort | risk assessment and spread of the potentially invasive ceratitis rosa karsch and ceratitis quilicii de meyer, mwatawala & virgilio sp. nov. using life-cycle simulation models: implications for phytosanitary measures and management |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5755740/ https://www.ncbi.nlm.nih.gov/pubmed/29304084 http://dx.doi.org/10.1371/journal.pone.0189138 |
work_keys_str_mv | AT tangachrysantusmbi riskassessmentandspreadofthepotentiallyinvasiveceratitisrosakarschandceratitisquiliciidemeyermwatawalavirgiliospnovusinglifecyclesimulationmodelsimplicationsforphytosanitarymeasuresandmanagement AT khamisfathiyambarak riskassessmentandspreadofthepotentiallyinvasiveceratitisrosakarschandceratitisquiliciidemeyermwatawalavirgiliospnovusinglifecyclesimulationmodelsimplicationsforphytosanitarymeasuresandmanagement AT tonnanghenriez riskassessmentandspreadofthepotentiallyinvasiveceratitisrosakarschandceratitisquiliciidemeyermwatawalavirgiliospnovusinglifecyclesimulationmodelsimplicationsforphytosanitarymeasuresandmanagement AT rwomushanaivan riskassessmentandspreadofthepotentiallyinvasiveceratitisrosakarschandceratitisquiliciidemeyermwatawalavirgiliospnovusinglifecyclesimulationmodelsimplicationsforphytosanitarymeasuresandmanagement AT mosomtaigladys riskassessmentandspreadofthepotentiallyinvasiveceratitisrosakarschandceratitisquiliciidemeyermwatawalavirgiliospnovusinglifecyclesimulationmodelsimplicationsforphytosanitarymeasuresandmanagement AT mohamedsamiraa riskassessmentandspreadofthepotentiallyinvasiveceratitisrosakarschandceratitisquiliciidemeyermwatawalavirgiliospnovusinglifecyclesimulationmodelsimplicationsforphytosanitarymeasuresandmanagement AT ekesisunday riskassessmentandspreadofthepotentiallyinvasiveceratitisrosakarschandceratitisquiliciidemeyermwatawalavirgiliospnovusinglifecyclesimulationmodelsimplicationsforphytosanitarymeasuresandmanagement |