Cargando…
Fuzziness-based active learning framework to enhance hyperspectral image classification performance for discriminative and generative classifiers
Hyperspectral image classification with a limited number of training samples without loss of accuracy is desirable, as collecting such data is often expensive and time-consuming. However, classifiers trained with limited samples usually end up with a large generalization error. To overcome the said...
Autores principales: | Ahmad, Muhammad, Protasov, Stanislav, Khan, Adil Mehmood, Hussain, Rasheed, Khattak, Asad Masood, Khan, Wajahat Ali |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5756090/ https://www.ncbi.nlm.nih.gov/pubmed/29304512 http://dx.doi.org/10.1371/journal.pone.0188996 |
Ejemplares similares
-
Ubiquitous Health Profile (UHPr): a big data curation platform for supporting health data interoperability
por: Satti, Fahad Ahmed, et al.
Publicado: (2020) -
Towards A Self Adaptive System for Social Wellness
por: Khattak, Asad Masood, et al.
Publicado: (2016) -
[Image: see text] : Oblivious similarity based searching for encrypted data outsourced to an untrusted domain
por: Pervez, Zeeshan, et al.
Publicado: (2017) -
A Hyperspectral Image Classification Method Based on Multi-Discriminator Generative Adversarial Networks
por: Gao, Hongmin, et al.
Publicado: (2019) -
Hybrid Mammogram Classification Using Rough Set and Fuzzy Classifier
por: Abu-Amara, Fadi, et al.
Publicado: (2009)