Cargando…

On the Quasistatic Limit of Dynamic Evolutions for a Peeling Test in Dimension One

The aim of this paper is to study the quasistatic limit of a one-dimensional model of dynamic debonding. We start from a dynamic problem that strongly couples the wave equation in a time-dependent domain with Griffith’s criterion for the evolution of the domain. Passing to the limit as inertia tends...

Descripción completa

Detalles Bibliográficos
Autores principales: Lazzaroni, Giuliano, Nardini, Lorenzo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5756580/
https://www.ncbi.nlm.nih.gov/pubmed/29367811
http://dx.doi.org/10.1007/s00332-017-9407-0
_version_ 1783290747121827840
author Lazzaroni, Giuliano
Nardini, Lorenzo
author_facet Lazzaroni, Giuliano
Nardini, Lorenzo
author_sort Lazzaroni, Giuliano
collection PubMed
description The aim of this paper is to study the quasistatic limit of a one-dimensional model of dynamic debonding. We start from a dynamic problem that strongly couples the wave equation in a time-dependent domain with Griffith’s criterion for the evolution of the domain. Passing to the limit as inertia tends to zero, we find that the limit evolution satisfies a stability condition; however, the activation rule in Griffith’s (quasistatic) criterion does not hold in general, thus the limit evolution is not rate-independent.
format Online
Article
Text
id pubmed-5756580
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Springer US
record_format MEDLINE/PubMed
spelling pubmed-57565802018-01-22 On the Quasistatic Limit of Dynamic Evolutions for a Peeling Test in Dimension One Lazzaroni, Giuliano Nardini, Lorenzo J Nonlinear Sci Article The aim of this paper is to study the quasistatic limit of a one-dimensional model of dynamic debonding. We start from a dynamic problem that strongly couples the wave equation in a time-dependent domain with Griffith’s criterion for the evolution of the domain. Passing to the limit as inertia tends to zero, we find that the limit evolution satisfies a stability condition; however, the activation rule in Griffith’s (quasistatic) criterion does not hold in general, thus the limit evolution is not rate-independent. Springer US 2017-08-17 2018 /pmc/articles/PMC5756580/ /pubmed/29367811 http://dx.doi.org/10.1007/s00332-017-9407-0 Text en © The Author(s) 2017 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
spellingShingle Article
Lazzaroni, Giuliano
Nardini, Lorenzo
On the Quasistatic Limit of Dynamic Evolutions for a Peeling Test in Dimension One
title On the Quasistatic Limit of Dynamic Evolutions for a Peeling Test in Dimension One
title_full On the Quasistatic Limit of Dynamic Evolutions for a Peeling Test in Dimension One
title_fullStr On the Quasistatic Limit of Dynamic Evolutions for a Peeling Test in Dimension One
title_full_unstemmed On the Quasistatic Limit of Dynamic Evolutions for a Peeling Test in Dimension One
title_short On the Quasistatic Limit of Dynamic Evolutions for a Peeling Test in Dimension One
title_sort on the quasistatic limit of dynamic evolutions for a peeling test in dimension one
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5756580/
https://www.ncbi.nlm.nih.gov/pubmed/29367811
http://dx.doi.org/10.1007/s00332-017-9407-0
work_keys_str_mv AT lazzaronigiuliano onthequasistaticlimitofdynamicevolutionsforapeelingtestindimensionone
AT nardinilorenzo onthequasistaticlimitofdynamicevolutionsforapeelingtestindimensionone