Cargando…
On the exponent in the Von Bertalanffy growth model
Von Bertalanffy proposed the differential equation m′(t) = p × m(t)(a) − q × m(t) for the description of the mass growth of animals as a function m(t) of time t. He suggested that the solution using the metabolic scaling exponent a = 2/3 (Von Bertalanffy growth function VBGF) would be universal for...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5756614/ https://www.ncbi.nlm.nih.gov/pubmed/29312827 http://dx.doi.org/10.7717/peerj.4205 |
_version_ | 1783290754405236736 |
---|---|
author | Renner-Martin, Katharina Brunner, Norbert Kühleitner, Manfred Nowak, Werner Georg Scheicher, Klaus |
author_facet | Renner-Martin, Katharina Brunner, Norbert Kühleitner, Manfred Nowak, Werner Georg Scheicher, Klaus |
author_sort | Renner-Martin, Katharina |
collection | PubMed |
description | Von Bertalanffy proposed the differential equation m′(t) = p × m(t)(a) − q × m(t) for the description of the mass growth of animals as a function m(t) of time t. He suggested that the solution using the metabolic scaling exponent a = 2/3 (Von Bertalanffy growth function VBGF) would be universal for vertebrates. Several authors questioned universality, as for certain species other models would provide a better fit. This paper reconsiders this question. Based on 60 data sets from literature (37 about fish and 23 about non-fish species) it optimizes the model parameters, in particular the exponent 0 ≤ a < 1, so that the model curve achieves the best fit to the data. The main observation of the paper is the large variability in the exponent, which can vary over a very large range without affecting the fit to the data significantly, when the other parameters are also optimized. The paper explains this by differences in the data quality: variability is low for data from highly controlled experiments and high for natural data. Other deficiencies were biologically meaningless optimal parameter values or optimal parameter values attained on the boundary of the parameter region (indicating the possible need for a different model). Only 11 of the 60 data sets were free of such deficiencies and for them no universal exponent could be discerned. |
format | Online Article Text |
id | pubmed-5756614 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | PeerJ Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-57566142018-01-08 On the exponent in the Von Bertalanffy growth model Renner-Martin, Katharina Brunner, Norbert Kühleitner, Manfred Nowak, Werner Georg Scheicher, Klaus PeerJ Agricultural Science Von Bertalanffy proposed the differential equation m′(t) = p × m(t)(a) − q × m(t) for the description of the mass growth of animals as a function m(t) of time t. He suggested that the solution using the metabolic scaling exponent a = 2/3 (Von Bertalanffy growth function VBGF) would be universal for vertebrates. Several authors questioned universality, as for certain species other models would provide a better fit. This paper reconsiders this question. Based on 60 data sets from literature (37 about fish and 23 about non-fish species) it optimizes the model parameters, in particular the exponent 0 ≤ a < 1, so that the model curve achieves the best fit to the data. The main observation of the paper is the large variability in the exponent, which can vary over a very large range without affecting the fit to the data significantly, when the other parameters are also optimized. The paper explains this by differences in the data quality: variability is low for data from highly controlled experiments and high for natural data. Other deficiencies were biologically meaningless optimal parameter values or optimal parameter values attained on the boundary of the parameter region (indicating the possible need for a different model). Only 11 of the 60 data sets were free of such deficiencies and for them no universal exponent could be discerned. PeerJ Inc. 2018-01-04 /pmc/articles/PMC5756614/ /pubmed/29312827 http://dx.doi.org/10.7717/peerj.4205 Text en ©2018 Renner-Martin et al. http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited. |
spellingShingle | Agricultural Science Renner-Martin, Katharina Brunner, Norbert Kühleitner, Manfred Nowak, Werner Georg Scheicher, Klaus On the exponent in the Von Bertalanffy growth model |
title | On the exponent in the Von Bertalanffy growth model |
title_full | On the exponent in the Von Bertalanffy growth model |
title_fullStr | On the exponent in the Von Bertalanffy growth model |
title_full_unstemmed | On the exponent in the Von Bertalanffy growth model |
title_short | On the exponent in the Von Bertalanffy growth model |
title_sort | on the exponent in the von bertalanffy growth model |
topic | Agricultural Science |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5756614/ https://www.ncbi.nlm.nih.gov/pubmed/29312827 http://dx.doi.org/10.7717/peerj.4205 |
work_keys_str_mv | AT rennermartinkatharina ontheexponentinthevonbertalanffygrowthmodel AT brunnernorbert ontheexponentinthevonbertalanffygrowthmodel AT kuhleitnermanfred ontheexponentinthevonbertalanffygrowthmodel AT nowakwernergeorg ontheexponentinthevonbertalanffygrowthmodel AT scheicherklaus ontheexponentinthevonbertalanffygrowthmodel |