Cargando…

Detecting rare carnivores using scats: Implications for monitoring a fox incursion into Tasmania

The ability to detect the incursion of an invasive species or destroy the last individuals during an eradication program are some of the most difficult aspects of invasive species management. The presence of foxes in Tasmania is a contentious issue with recent structured monitoring efforts, involvin...

Descripción completa

Detalles Bibliográficos
Autores principales: Ramsey, David S. L., Barclay, Candida, Campbell, Catriona D., Dewar, Elise, MacDonald, Anna J., Modave, Elodie, Quasim, Sumaiya, Sarre, Stephen D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5756840/
https://www.ncbi.nlm.nih.gov/pubmed/29321909
http://dx.doi.org/10.1002/ece3.3694
Descripción
Sumario:The ability to detect the incursion of an invasive species or destroy the last individuals during an eradication program are some of the most difficult aspects of invasive species management. The presence of foxes in Tasmania is a contentious issue with recent structured monitoring efforts, involving collection of carnivore scats and testing for fox DNA, failing to detect any evidence of foxes. Understanding the likelihood that monitoring efforts would detect fox presence, given at least one is present, is therefore critical for understanding the role of scat monitoring for informing the response to an incursion. We undertook trials to estimate the probability of fox scat detection through monitoring by scat‐detector dogs and person searches and used this information to critically evaluate the power of scat monitoring efforts for detecting foxes in the Tasmanian landscape. The probability of detecting a single scat present in a 1‐km(2) survey unit was highest for scat‐detector dogs searches (0.053) compared with person searches ([Formula: see text]) for each 10 km of search effort. Simulation of the power of recent scat monitoring efforts undertaken in Tasmania from 2011 to 2015 suggested that single foxes would have to be present in at least 20 different locations or fox breeding groups present in at least six different locations, in order to be detected with a high level of confidence (>0.80). We have shown that highly structured detection trials can provide managers with the quantitative tools needed to make judgments about the power of large‐scale scat monitoring programs. Results suggest that a fox population, if present in Tasmania, could remain undetected by a large‐scale, structured scat monitoring program. Therefore, it is likely that other forms of surveillance, in conjunction with scat monitoring, will be necessary to demonstrate that foxes are absent from Tasmania with high confidence.