Cargando…
A hierarchical spatiotemporal analog forecasting model for count data
Analog forecasting is a mechanism‐free nonlinear method that forecasts a system forward in time by examining how past states deemed similar to the current state moved forward. Previous applications of analog forecasting has been successful at producing robust forecasts for a variety of ecological an...
Autores principales: | McDermott, Patrick L., Wikle, Christopher K., Millspaugh, Joshua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5756884/ https://www.ncbi.nlm.nih.gov/pubmed/29321914 http://dx.doi.org/10.1002/ece3.3621 |
Ejemplares similares
-
Bayesian Recurrent Neural Network Models for Forecasting and Quantifying Uncertainty in Spatial-Temporal Data
por: McDermott, Patrick L., et al.
Publicado: (2019) -
Multivariate Count Data Models for Time Series Forecasting
por: Shapovalova, Yuliya, et al.
Publicado: (2021) -
Forecasting model of Corylus, Alnus, and Betula pollen concentration levels using spatiotemporal correlation properties of pollen count
por: Nowosad, Jakub, et al.
Publicado: (2015) -
Deep Spatiotemporal Model for COVID-19 Forecasting
por: Muñoz-Organero, Mario, et al.
Publicado: (2022) -
Multivariate hierarchical frameworks for modeling delayed reporting in count data
por: Stoner, Oliver, et al.
Publicado: (2019)