Cargando…
Metabolic Footprints and Molecular Subtypes in Breast Cancer
Cancer treatment options are increasing. However, even among the same tumor histotype, interpatient tumor heterogeneity should be considered for best therapeutic result. Metabolomics represents the last addition to promising “omic” sciences such as genomics, transcriptomics, and proteomics. Biochemi...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5757146/ https://www.ncbi.nlm.nih.gov/pubmed/29434411 http://dx.doi.org/10.1155/2017/7687851 |
_version_ | 1783290813401268224 |
---|---|
author | Cappelletti, Vera Iorio, Egidio Miodini, Patrizia Silvestri, Marco Dugo, Matteo Daidone, Maria Grazia |
author_facet | Cappelletti, Vera Iorio, Egidio Miodini, Patrizia Silvestri, Marco Dugo, Matteo Daidone, Maria Grazia |
author_sort | Cappelletti, Vera |
collection | PubMed |
description | Cancer treatment options are increasing. However, even among the same tumor histotype, interpatient tumor heterogeneity should be considered for best therapeutic result. Metabolomics represents the last addition to promising “omic” sciences such as genomics, transcriptomics, and proteomics. Biochemical transformation processes underlying energy production and biosynthetic processes have been recognized as a hallmark of the cancer cell and hold a promise to build a bridge between genotype and phenotype. Since breast tumors represent a collection of different diseases, understanding metabolic differences between molecular subtypes offers a way to identify new subtype-specific treatment strategies, especially if metabolite changes are evaluated in the broader context of the network of enzymatic reactions and pathways. Here, after a brief overview of the literature, original metabolomics data in a series of 92 primary breast cancer patients undergoing surgery at the Istituto Nazionale dei Tumori of Milano are reported highlighting a series of metabolic differences across various molecular subtypes. In particular, the difficult-to-treat luminal B subgroup represents a tumor type which preferentially relies on fatty acids for energy, whereas HER2 and basal-like ones show prevalently alterations in glucose/glutamine metabolism. |
format | Online Article Text |
id | pubmed-5757146 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-57571462018-02-12 Metabolic Footprints and Molecular Subtypes in Breast Cancer Cappelletti, Vera Iorio, Egidio Miodini, Patrizia Silvestri, Marco Dugo, Matteo Daidone, Maria Grazia Dis Markers Review Article Cancer treatment options are increasing. However, even among the same tumor histotype, interpatient tumor heterogeneity should be considered for best therapeutic result. Metabolomics represents the last addition to promising “omic” sciences such as genomics, transcriptomics, and proteomics. Biochemical transformation processes underlying energy production and biosynthetic processes have been recognized as a hallmark of the cancer cell and hold a promise to build a bridge between genotype and phenotype. Since breast tumors represent a collection of different diseases, understanding metabolic differences between molecular subtypes offers a way to identify new subtype-specific treatment strategies, especially if metabolite changes are evaluated in the broader context of the network of enzymatic reactions and pathways. Here, after a brief overview of the literature, original metabolomics data in a series of 92 primary breast cancer patients undergoing surgery at the Istituto Nazionale dei Tumori of Milano are reported highlighting a series of metabolic differences across various molecular subtypes. In particular, the difficult-to-treat luminal B subgroup represents a tumor type which preferentially relies on fatty acids for energy, whereas HER2 and basal-like ones show prevalently alterations in glucose/glutamine metabolism. Hindawi 2017 2017-12-24 /pmc/articles/PMC5757146/ /pubmed/29434411 http://dx.doi.org/10.1155/2017/7687851 Text en Copyright © 2017 Vera Cappelletti et al. http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Review Article Cappelletti, Vera Iorio, Egidio Miodini, Patrizia Silvestri, Marco Dugo, Matteo Daidone, Maria Grazia Metabolic Footprints and Molecular Subtypes in Breast Cancer |
title | Metabolic Footprints and Molecular Subtypes in Breast Cancer |
title_full | Metabolic Footprints and Molecular Subtypes in Breast Cancer |
title_fullStr | Metabolic Footprints and Molecular Subtypes in Breast Cancer |
title_full_unstemmed | Metabolic Footprints and Molecular Subtypes in Breast Cancer |
title_short | Metabolic Footprints and Molecular Subtypes in Breast Cancer |
title_sort | metabolic footprints and molecular subtypes in breast cancer |
topic | Review Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5757146/ https://www.ncbi.nlm.nih.gov/pubmed/29434411 http://dx.doi.org/10.1155/2017/7687851 |
work_keys_str_mv | AT cappellettivera metabolicfootprintsandmolecularsubtypesinbreastcancer AT iorioegidio metabolicfootprintsandmolecularsubtypesinbreastcancer AT miodinipatrizia metabolicfootprintsandmolecularsubtypesinbreastcancer AT silvestrimarco metabolicfootprintsandmolecularsubtypesinbreastcancer AT dugomatteo metabolicfootprintsandmolecularsubtypesinbreastcancer AT daidonemariagrazia metabolicfootprintsandmolecularsubtypesinbreastcancer |