Cargando…
Mutual influence of secondary and key drug‐resistance mutations on catalytic properties and thermal stability of TEM‐type β‐lactamases
Highly mutable β‐lactamases are responsible for the ability of Gram‐negative bacteria to resist β‐lactam antibiotics. Using site‐directed mutagenesis technique, we have produced in vitro a number of recombinant analogs of naturally occurring TEM‐type β‐lactamases, bearing the secondary substitution...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5757180/ https://www.ncbi.nlm.nih.gov/pubmed/29321962 http://dx.doi.org/10.1002/2211-5463.12352 |
_version_ | 1783290820553605120 |
---|---|
author | Grigorenko, Vitaly Uporov, Igor Rubtsova, Maya Andreeva, Irina Shcherbinin, Dmitrii Veselovsky, Alexander Serova, Oksana Ulyashova, Maria Ishtubaev, Igor Egorov, Alexey |
author_facet | Grigorenko, Vitaly Uporov, Igor Rubtsova, Maya Andreeva, Irina Shcherbinin, Dmitrii Veselovsky, Alexander Serova, Oksana Ulyashova, Maria Ishtubaev, Igor Egorov, Alexey |
author_sort | Grigorenko, Vitaly |
collection | PubMed |
description | Highly mutable β‐lactamases are responsible for the ability of Gram‐negative bacteria to resist β‐lactam antibiotics. Using site‐directed mutagenesis technique, we have produced in vitro a number of recombinant analogs of naturally occurring TEM‐type β‐lactamases, bearing the secondary substitution Q39K and key mutations related to the extended‐spectrum (E104K, R164S) and inhibitor‐resistant (M69V) β‐lactamases. The mutation Q39K alone was found to be neutral and hardly affected the catalytic properties of β‐lactamases. However, in combination with the key mutations, this substitution resulted in decreased K (M) values towards hydrolysis of a chromogenic substrate, CENTA. The ability of enzymes to restore catalytic activity after exposure to elevated temperature has been examined. All double and triple mutants of β‐lactamase TEM‐1 bearing the Q39K substitution showed lower thermal stability compared with the enzyme with Q39 intact. A sharp decrease in the stability was observed when Q39K was combined with E104K and M69V. The key R164S substitution demonstrated unusual ability to resist thermal inactivation. Computer analysis of the structure and molecular dynamics of β‐lactamase TEM‐1 revealed a network of hydrogen bonds from the residues Q39 and K32, related to the N‐terminal α‐helix, towards the residues R244 and G236, located in the vicinity of the enzyme's catalytic site. Replacement of Q39 by lysine in combination with the key drug resistance mutations may be responsible for loss of protein thermal stability and elevated mobility of its secondary structure elements. This effect on the activity of β‐lactamases can be used as a new potential target for inhibiting the enzyme. |
format | Online Article Text |
id | pubmed-5757180 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-57571802018-01-10 Mutual influence of secondary and key drug‐resistance mutations on catalytic properties and thermal stability of TEM‐type β‐lactamases Grigorenko, Vitaly Uporov, Igor Rubtsova, Maya Andreeva, Irina Shcherbinin, Dmitrii Veselovsky, Alexander Serova, Oksana Ulyashova, Maria Ishtubaev, Igor Egorov, Alexey FEBS Open Bio Research Articles Highly mutable β‐lactamases are responsible for the ability of Gram‐negative bacteria to resist β‐lactam antibiotics. Using site‐directed mutagenesis technique, we have produced in vitro a number of recombinant analogs of naturally occurring TEM‐type β‐lactamases, bearing the secondary substitution Q39K and key mutations related to the extended‐spectrum (E104K, R164S) and inhibitor‐resistant (M69V) β‐lactamases. The mutation Q39K alone was found to be neutral and hardly affected the catalytic properties of β‐lactamases. However, in combination with the key mutations, this substitution resulted in decreased K (M) values towards hydrolysis of a chromogenic substrate, CENTA. The ability of enzymes to restore catalytic activity after exposure to elevated temperature has been examined. All double and triple mutants of β‐lactamase TEM‐1 bearing the Q39K substitution showed lower thermal stability compared with the enzyme with Q39 intact. A sharp decrease in the stability was observed when Q39K was combined with E104K and M69V. The key R164S substitution demonstrated unusual ability to resist thermal inactivation. Computer analysis of the structure and molecular dynamics of β‐lactamase TEM‐1 revealed a network of hydrogen bonds from the residues Q39 and K32, related to the N‐terminal α‐helix, towards the residues R244 and G236, located in the vicinity of the enzyme's catalytic site. Replacement of Q39 by lysine in combination with the key drug resistance mutations may be responsible for loss of protein thermal stability and elevated mobility of its secondary structure elements. This effect on the activity of β‐lactamases can be used as a new potential target for inhibiting the enzyme. John Wiley and Sons Inc. 2017-12-11 /pmc/articles/PMC5757180/ /pubmed/29321962 http://dx.doi.org/10.1002/2211-5463.12352 Text en © 2017 The Authors. Published by FEBS Press and John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution (http://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Articles Grigorenko, Vitaly Uporov, Igor Rubtsova, Maya Andreeva, Irina Shcherbinin, Dmitrii Veselovsky, Alexander Serova, Oksana Ulyashova, Maria Ishtubaev, Igor Egorov, Alexey Mutual influence of secondary and key drug‐resistance mutations on catalytic properties and thermal stability of TEM‐type β‐lactamases |
title | Mutual influence of secondary and key drug‐resistance mutations on catalytic properties and thermal stability of TEM‐type β‐lactamases |
title_full | Mutual influence of secondary and key drug‐resistance mutations on catalytic properties and thermal stability of TEM‐type β‐lactamases |
title_fullStr | Mutual influence of secondary and key drug‐resistance mutations on catalytic properties and thermal stability of TEM‐type β‐lactamases |
title_full_unstemmed | Mutual influence of secondary and key drug‐resistance mutations on catalytic properties and thermal stability of TEM‐type β‐lactamases |
title_short | Mutual influence of secondary and key drug‐resistance mutations on catalytic properties and thermal stability of TEM‐type β‐lactamases |
title_sort | mutual influence of secondary and key drug‐resistance mutations on catalytic properties and thermal stability of tem‐type β‐lactamases |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5757180/ https://www.ncbi.nlm.nih.gov/pubmed/29321962 http://dx.doi.org/10.1002/2211-5463.12352 |
work_keys_str_mv | AT grigorenkovitaly mutualinfluenceofsecondaryandkeydrugresistancemutationsoncatalyticpropertiesandthermalstabilityoftemtypeblactamases AT uporovigor mutualinfluenceofsecondaryandkeydrugresistancemutationsoncatalyticpropertiesandthermalstabilityoftemtypeblactamases AT rubtsovamaya mutualinfluenceofsecondaryandkeydrugresistancemutationsoncatalyticpropertiesandthermalstabilityoftemtypeblactamases AT andreevairina mutualinfluenceofsecondaryandkeydrugresistancemutationsoncatalyticpropertiesandthermalstabilityoftemtypeblactamases AT shcherbinindmitrii mutualinfluenceofsecondaryandkeydrugresistancemutationsoncatalyticpropertiesandthermalstabilityoftemtypeblactamases AT veselovskyalexander mutualinfluenceofsecondaryandkeydrugresistancemutationsoncatalyticpropertiesandthermalstabilityoftemtypeblactamases AT serovaoksana mutualinfluenceofsecondaryandkeydrugresistancemutationsoncatalyticpropertiesandthermalstabilityoftemtypeblactamases AT ulyashovamaria mutualinfluenceofsecondaryandkeydrugresistancemutationsoncatalyticpropertiesandthermalstabilityoftemtypeblactamases AT ishtubaevigor mutualinfluenceofsecondaryandkeydrugresistancemutationsoncatalyticpropertiesandthermalstabilityoftemtypeblactamases AT egorovalexey mutualinfluenceofsecondaryandkeydrugresistancemutationsoncatalyticpropertiesandthermalstabilityoftemtypeblactamases |