Cargando…

Lipidomic and Transcriptomic Basis of Lysosomal Dysfunction in Progranulin Deficiency

Defective lysosomal function defines many neurodegenerative diseases, such as neuronal ceroid lipofuscinoses (NCL) and Niemann-Pick type C (NPC), and is implicated in Alzheimer's disease (AD) and frontotemporal lobar degeneration (FTLD-TDP) with progranulin (PGRN) deficiency. Here, we show that...

Descripción completa

Detalles Bibliográficos
Autores principales: Evers, Bret M., Rodriguez-Navas, Carlos, Tesla, Rachel J., Prange-Kiel, Janine, Wasser, Catherine R., Yoo, Kyoung Shin, McDonald, Jeffrey, Cenik, Basar, Ravenscroft, Thomas A., Plattner, Florian, Rademakers, Rosa, Yu, Gang, White, Charles L., Herz, Joachim
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5757843/
https://www.ncbi.nlm.nih.gov/pubmed/28903038
http://dx.doi.org/10.1016/j.celrep.2017.08.056
_version_ 1783290898894815232
author Evers, Bret M.
Rodriguez-Navas, Carlos
Tesla, Rachel J.
Prange-Kiel, Janine
Wasser, Catherine R.
Yoo, Kyoung Shin
McDonald, Jeffrey
Cenik, Basar
Ravenscroft, Thomas A.
Plattner, Florian
Rademakers, Rosa
Yu, Gang
White, Charles L.
Herz, Joachim
author_facet Evers, Bret M.
Rodriguez-Navas, Carlos
Tesla, Rachel J.
Prange-Kiel, Janine
Wasser, Catherine R.
Yoo, Kyoung Shin
McDonald, Jeffrey
Cenik, Basar
Ravenscroft, Thomas A.
Plattner, Florian
Rademakers, Rosa
Yu, Gang
White, Charles L.
Herz, Joachim
author_sort Evers, Bret M.
collection PubMed
description Defective lysosomal function defines many neurodegenerative diseases, such as neuronal ceroid lipofuscinoses (NCL) and Niemann-Pick type C (NPC), and is implicated in Alzheimer's disease (AD) and frontotemporal lobar degeneration (FTLD-TDP) with progranulin (PGRN) deficiency. Here, we show that PGRN is involved in lysosomal homeostasis and lipid metabolism. PGRN deficiency alters lysosome abundance and morphology in mouse neurons. Using an unbiased lipidomic approach, we found that brain lipid composition in humans and mice with PGRN deficiency shows disease-specific differences that distinguish them from normal and other pathologic groups. PGRN loss leads to an accumulation of polyunsaturated triacylglycerides, as well as a reduction of diacylglycerides and phosphatidylserines in fibroblast and enriched lysosome lipidomes. Transcriptomic analysis of PGRN-deficient mouse brains revealed distinct expression patterns of lysosomal, immune-related, and lipid metabolic genes. These findings have implications for the pathogenesis of FTLD-TDP due to PGRN deficiency and suggest lysosomal dysfunction as an underlying mechanism.
format Online
Article
Text
id pubmed-5757843
institution National Center for Biotechnology Information
language English
publishDate 2017
record_format MEDLINE/PubMed
spelling pubmed-57578432018-01-08 Lipidomic and Transcriptomic Basis of Lysosomal Dysfunction in Progranulin Deficiency Evers, Bret M. Rodriguez-Navas, Carlos Tesla, Rachel J. Prange-Kiel, Janine Wasser, Catherine R. Yoo, Kyoung Shin McDonald, Jeffrey Cenik, Basar Ravenscroft, Thomas A. Plattner, Florian Rademakers, Rosa Yu, Gang White, Charles L. Herz, Joachim Cell Rep Article Defective lysosomal function defines many neurodegenerative diseases, such as neuronal ceroid lipofuscinoses (NCL) and Niemann-Pick type C (NPC), and is implicated in Alzheimer's disease (AD) and frontotemporal lobar degeneration (FTLD-TDP) with progranulin (PGRN) deficiency. Here, we show that PGRN is involved in lysosomal homeostasis and lipid metabolism. PGRN deficiency alters lysosome abundance and morphology in mouse neurons. Using an unbiased lipidomic approach, we found that brain lipid composition in humans and mice with PGRN deficiency shows disease-specific differences that distinguish them from normal and other pathologic groups. PGRN loss leads to an accumulation of polyunsaturated triacylglycerides, as well as a reduction of diacylglycerides and phosphatidylserines in fibroblast and enriched lysosome lipidomes. Transcriptomic analysis of PGRN-deficient mouse brains revealed distinct expression patterns of lysosomal, immune-related, and lipid metabolic genes. These findings have implications for the pathogenesis of FTLD-TDP due to PGRN deficiency and suggest lysosomal dysfunction as an underlying mechanism. 2017-09-12 /pmc/articles/PMC5757843/ /pubmed/28903038 http://dx.doi.org/10.1016/j.celrep.2017.08.056 Text en http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Evers, Bret M.
Rodriguez-Navas, Carlos
Tesla, Rachel J.
Prange-Kiel, Janine
Wasser, Catherine R.
Yoo, Kyoung Shin
McDonald, Jeffrey
Cenik, Basar
Ravenscroft, Thomas A.
Plattner, Florian
Rademakers, Rosa
Yu, Gang
White, Charles L.
Herz, Joachim
Lipidomic and Transcriptomic Basis of Lysosomal Dysfunction in Progranulin Deficiency
title Lipidomic and Transcriptomic Basis of Lysosomal Dysfunction in Progranulin Deficiency
title_full Lipidomic and Transcriptomic Basis of Lysosomal Dysfunction in Progranulin Deficiency
title_fullStr Lipidomic and Transcriptomic Basis of Lysosomal Dysfunction in Progranulin Deficiency
title_full_unstemmed Lipidomic and Transcriptomic Basis of Lysosomal Dysfunction in Progranulin Deficiency
title_short Lipidomic and Transcriptomic Basis of Lysosomal Dysfunction in Progranulin Deficiency
title_sort lipidomic and transcriptomic basis of lysosomal dysfunction in progranulin deficiency
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5757843/
https://www.ncbi.nlm.nih.gov/pubmed/28903038
http://dx.doi.org/10.1016/j.celrep.2017.08.056
work_keys_str_mv AT eversbretm lipidomicandtranscriptomicbasisoflysosomaldysfunctioninprogranulindeficiency
AT rodrigueznavascarlos lipidomicandtranscriptomicbasisoflysosomaldysfunctioninprogranulindeficiency
AT teslarachelj lipidomicandtranscriptomicbasisoflysosomaldysfunctioninprogranulindeficiency
AT prangekieljanine lipidomicandtranscriptomicbasisoflysosomaldysfunctioninprogranulindeficiency
AT wassercatheriner lipidomicandtranscriptomicbasisoflysosomaldysfunctioninprogranulindeficiency
AT yookyoungshin lipidomicandtranscriptomicbasisoflysosomaldysfunctioninprogranulindeficiency
AT mcdonaldjeffrey lipidomicandtranscriptomicbasisoflysosomaldysfunctioninprogranulindeficiency
AT cenikbasar lipidomicandtranscriptomicbasisoflysosomaldysfunctioninprogranulindeficiency
AT ravenscroftthomasa lipidomicandtranscriptomicbasisoflysosomaldysfunctioninprogranulindeficiency
AT plattnerflorian lipidomicandtranscriptomicbasisoflysosomaldysfunctioninprogranulindeficiency
AT rademakersrosa lipidomicandtranscriptomicbasisoflysosomaldysfunctioninprogranulindeficiency
AT yugang lipidomicandtranscriptomicbasisoflysosomaldysfunctioninprogranulindeficiency
AT whitecharlesl lipidomicandtranscriptomicbasisoflysosomaldysfunctioninprogranulindeficiency
AT herzjoachim lipidomicandtranscriptomicbasisoflysosomaldysfunctioninprogranulindeficiency