Cargando…

Feasibility and transcriptomic analysis of betalain production by biomembrane surface fermentation of Penicillium novae-zelandiae

In this study, a biomembrane surface fermentation was used to produce red pigments of Penicillium novae-zelandiae, and the significant improvement in pigment production by the addition of 0.4 g/L of tyrosine demonstrated that the red pigments probably contained betalain. Therefore, one red pigment w...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Hailei, Li, Yi, Zhang, Kun, Ma, Yingqun, Li, Ping
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5758489/
https://www.ncbi.nlm.nih.gov/pubmed/29313259
http://dx.doi.org/10.1186/s13568-017-0529-4
Descripción
Sumario:In this study, a biomembrane surface fermentation was used to produce red pigments of Penicillium novae-zelandiae, and the significant improvement in pigment production by the addition of 0.4 g/L of tyrosine demonstrated that the red pigments probably contained betalain. Therefore, one red pigment was purified, and identified as 2-decarboxybetanin by high-resolution mass spectrometry (MS) and MS/MS analysis. Transcriptomic analysis revealed the differentially expressed genes and metabolic profile of P. novae-zelandiae in response to different cultivations and exhibited the complete biosynthetic pathway of 2-decarboxybetanin in P. novae-zelandiae. Betalains are important water-soluble nitrogen-containing food coloring agents, obtained mainly from beetroot by chemical extraction. This paper is the first report about the production of betalain by microbial fermentation, and results exhibit the possible use of fungal fermentation in future 2-decarboxybetanin production. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s13568-017-0529-4) contains supplementary material, which is available to authorized users.