Cargando…
Enhanced growth of large-scale nanostructures with metallic ion precipitation in helium plasmas
Helium plasma irradiation on metal surfaces leads to the formation of metallic fuzzy nanostructures accompanied by the growth of helium bubbles in metals. The mechanism of the growth process, its impact for fusion devices, and potential application have been explored. Here we show enhanced growth of...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5758641/ https://www.ncbi.nlm.nih.gov/pubmed/29311717 http://dx.doi.org/10.1038/s41598-017-18476-7 |
Sumario: | Helium plasma irradiation on metal surfaces leads to the formation of metallic fuzzy nanostructures accompanied by the growth of helium bubbles in metals. The mechanism of the growth process, its impact for fusion devices, and potential application have been explored. Here we show enhanced growth of large-scale fuzz by precipitating additional metallic particles during helium plasma irradiation. The growth rate of the fuzzy structures became orders of magnitude greater than conventional fuzz growth; in an hour of irradiation, 1 mm-thick visible tungsten and molybdenum fuzzy fur structures covered a tungsten metal substrate. Additional precipitation of metallic ions breaks the bottleneck diffusion process; moreover, further acceleration in the growth rate could have occurred if the electric sheath shape was influenced by the grown structure and the electric field that formed around the structure started collecting ions. |
---|