Cargando…

Proximal iteratively reweighted algorithm for low-rank matrix recovery

This paper proposes a proximal iteratively reweighted algorithm to recover a low-rank matrix based on the weighted fixed point method. The weighted singular value thresholding problem gains a closed form solution because of the special properties of nonconvex surrogate functions. Besides, this study...

Descripción completa

Detalles Bibliográficos
Autores principales: Ma, Chao-Qun, Ren, Yi-Shuai
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5758698/
https://www.ncbi.nlm.nih.gov/pubmed/29367824
http://dx.doi.org/10.1186/s13660-017-1602-x

Ejemplares similares