Cargando…

HoxC5 and miR-615-3p target newly evolved genomic regions to repress hTERT and inhibit tumorigenesis

The repression of telomerase activity during cellular differentiation promotes replicative aging and functions as a physiological barrier for tumorigenesis in long-lived mammals, including humans. However, the underlying mechanisms remain largely unclear. Here we describe how miR-615-3p represses hT...

Descripción completa

Detalles Bibliográficos
Autores principales: Yan, TingDong, Ooi, Wen Fong, Qamra, Aditi, Cheung, Alice, Ma, DongLiang, Sundaram, Gopinath Meenakshi, Xu, Chang, Xing, Manjie, Poon, LaiFong, Wang, Jing, Loh, Yan Ping, Ho, Jess Hui Jie, Ng, Joscelyn Jun Quan, Ramlee, Muhammad Khairul, Aswad, Luay, Rozen, Steve G., Ghosh, Sujoy, Bard, Frederic A., Sampath, Prabha, Tergaonkar, Vinay, Davies, James O. J., Hughes, Jim R., Goh, Eyleen, Bi, Xuezhi, Fullwood, Melissa Jane, Tan, Patrick, Li, Shang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5758779/
https://www.ncbi.nlm.nih.gov/pubmed/29311615
http://dx.doi.org/10.1038/s41467-017-02601-1
Descripción
Sumario:The repression of telomerase activity during cellular differentiation promotes replicative aging and functions as a physiological barrier for tumorigenesis in long-lived mammals, including humans. However, the underlying mechanisms remain largely unclear. Here we describe how miR-615-3p represses hTERT expression. mir-615-3p is located in an intron of the HOXC5 gene, a member of the highly conserved homeobox family of transcription factors controlling embryogenesis and development. Unexpectedly, we found that HoxC5 also represses hTERT expression by disrupting the long-range interaction between hTERT promoter and its distal enhancer. The 3′UTR of hTERT and its upstream enhancer region are well conserved in long-lived primates. Both mir-615-3p and HOXC5 are activated upon differentiation, which constitute a feed-forward loop that coordinates transcriptional and post-transcriptional repression of hTERT during cellular differentiation. Deregulation of HOXC5 and mir-615-3p expression may contribute to the activation of hTERT in human cancers.