Cargando…
Deep Learning Accurately Predicts Estrogen Receptor Status in Breast Cancer Metabolomics Data
[Image: see text] Metabolomics holds the promise as a new technology to diagnose highly heterogeneous diseases. Conventionally, metabolomics data analysis for diagnosis is done using various statistical and machine learning based classification methods. However, it remains unknown if deep neural net...
Autores principales: | Alakwaa, Fadhl M., Chaudhary, Kumardeep, Garmire, Lana X. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical
Society
2017
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5759031/ https://www.ncbi.nlm.nih.gov/pubmed/29110491 http://dx.doi.org/10.1021/acs.jproteome.7b00595 |
Ejemplares similares
-
Lilikoi: an R package for personalized pathway-based classification modeling using metabolomics data
por: AlAkwaa, Fadhl M, et al.
Publicado: (2018) -
Deep Learning data integration for better risk stratification models of bladder cancer
por: Poirion, Olivier B., et al.
Publicado: (2018) -
DeepProg: an ensemble of deep-learning and machine-learning models for prognosis prediction using multi-omics data
por: Poirion, Olivier B., et al.
Publicado: (2021) -
More Is Better: Recent Progress in Multi-Omics Data Integration Methods
por: Huang, Sijia, et al.
Publicado: (2017) -
DeepImpute: an accurate, fast, and scalable deep neural network method to impute single-cell RNA-seq data
por: Arisdakessian, Cédric, et al.
Publicado: (2019)