Cargando…

A novel Notch1 missense mutation (C1133Y) in the Abruptex domain exhibits enhanced proliferation and invasion in oral squamous cell carcinoma

BACKGROUND: Notch1 has been regarded as a fundamental regulator in tissue differentiation and stem cell properties. Recently, Notch1 mutations have been reported intensively both in solid tumors and in hematopoietic malignancies. However, little is known about the biological effect and the clinical...

Descripción completa

Detalles Bibliográficos
Autores principales: Zheng, Yang, Wang, Zhao, Ding, Xu, Zhang, Wei, Li, Gang, Liu, Laikui, Wu, Heming, Gu, Wenyi, Wu, Yunong, Song, Xiaomeng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5759178/
https://www.ncbi.nlm.nih.gov/pubmed/29321718
http://dx.doi.org/10.1186/s12935-017-0496-5
Descripción
Sumario:BACKGROUND: Notch1 has been regarded as a fundamental regulator in tissue differentiation and stem cell properties. Recently, Notch1 mutations have been reported intensively both in solid tumors and in hematopoietic malignancies. However, little is known about the biological effect and the clinical implication of these reported mutations. Previously, we discovered several missense mutations in the Notch1 receptor in a Chinese population with oral squamous cell carcinoma (OSCC). METHODS: We selected a ‘hotspot’ mutation in the Abruptex domain (C1133Y). The expression of Notch1 was determined by western blot and real-time qPCR in OSCC cell lines transfected with pcDNA3.1-Notch1(WT), pcDNA3.1-Notch1(C1133Y), or pcDNA3.1 empty vector. CCK-8 assays were used to assess cell proliferation. Flow cytometry and western blot were used to confirm the alteration of cell cycle after transfection. Transwell assays and the detection of Epithelial-to-mesenchymal transition (EMT) markers were used to determine the invasive ability. The effects of Notch1 C1133Y mutation were analyzed by Immunofluorescence staining and the expression of EGFR-PI3K/AKT signaling. RESULTS: We demonstrated that Notch1(C1133Y) mutation inactivated the canonical Notch1 signaling. We identified an oncogenic phenotype of this mutation by promoting cell proliferation, invasion and by inducing EMT in OSCC cell lines. We found that the Notch1(C1133Y) mutation exhibited a decreased S1-cleavage due to the impaired transport of Notch1 protein from the endoplasmic reticulum (ER) to the Golgi complex, which was consistent with the observation of the failure of the Notch1(C1133Y) mutated receptor to present at the cell surface. Importantly, the mutated Notch1 activated the EGFR-PI3K/AKT signaling pathway, which has been confirmed as an overwhelming modulator in OSCC. CONCLUSIONS: Taken together, our findings revealed for the first time a novel Notch1 mutation that enhances proliferation and invasion in OSCC cell lines. The Notch1 C1133Y mutation impairs the processing of notch1 protein and the critical links between the mutated Notch1 and the activated EGFR-PI3K/AKT signaling pathway. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12935-017-0496-5) contains supplementary material, which is available to authorized users.