Cargando…
Thresher: determining the number of clusters while removing outliers
BACKGROUND: Cluster analysis is the most common unsupervised method for finding hidden groups in data. Clustering presents two main challenges: (1) finding the optimal number of clusters, and (2) removing “outliers” among the objects being clustered. Few clustering algorithms currently deal directly...
Autores principales: | Wang, Min, Abrams, Zachary B., Kornblau, Steven M., Coombes, Kevin R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5759208/ https://www.ncbi.nlm.nih.gov/pubmed/29310570 http://dx.doi.org/10.1186/s12859-017-1998-9 |
Ejemplares similares
-
Senior Staff Appointments (Hoffmann, Hoogland, Thresher)
Publicado: (1989) -
Senior Staff Appointments (Hoogland, Hoffmann, Thresher)
Publicado: (1989) -
Senior Staff Appointment (J.J. Thresher)
Publicado: (1986) -
Senior Staff Appointments (by the Director-General) (Thresher, Martinez)
Publicado: (1986) -
Bayesian hierarchical clustering for microarray time series data with replicates and outlier measurements
por: Cooke, Emma J, et al.
Publicado: (2011)