Cargando…
A support vector machine and a random forest classifier indicates a 15-miRNA set related to osteosarcoma recurrence
BACKGROUND: Osteosarcoma, which originates in the mesenchymal tissue, is the prevalent primary solid malignancy of the bone. It is of great importance to explore the mechanisms of metastasis and recurrence, which are two primary reasons accounting for the high death rate in osteosarcoma. DATA AND ME...
Autores principales: | He, Yunfei, Ma, Jun, Wang, An, Wang, Weiheng, Luo, Shengchang, Liu, Yaoming, Ye, Xiaojian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove Medical Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5759858/ https://www.ncbi.nlm.nih.gov/pubmed/29379305 http://dx.doi.org/10.2147/OTT.S148394 |
Ejemplares similares
-
A support vector machine classifier for the prediction of osteosarcoma metastasis with high accuracy
por: He, Yunfei, et al.
Publicado: (2017) -
eRFSVM: a hybrid classifier to predict enhancers-integrating random forests with support vector machines
por: Huang, Fang, et al.
Publicado: (2016) -
A random forest classifier predicts recurrence risk in patients with ovarian cancer
por: Cheng, Li, et al.
Publicado: (2018) -
A 19-miRNA Support Vector Machine classifier and a 6-miRNA risk score system designed for ovarian cancer patients
por: Dong, Jingwei, et al.
Publicado: (2019) -
A 19-miRNA Support Vector Machine classifier and a 6-miRNA risk score system designed for ovarian cancer patients
por: Dong, Jingwei, et al.
Publicado: (2019)