Cargando…

Effect of microstructure on the impact toughness and temper embrittlement of SA508Gr.4N steel for advanced pressure vessel materials

The effect of microstructure on the impact toughness and the temper embrittlement of a SA508Gr.4N steel was investigated. Martensitic and bainitic structures formed in this material were examined via scanning electron microscopy, electron backscatter diffraction, transmission electron microscopy, an...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Zhiqiang, Liu, Zhengdong, He, Xikou, Qiao, Shibin, Xie, Changsheng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5760566/
https://www.ncbi.nlm.nih.gov/pubmed/29317686
http://dx.doi.org/10.1038/s41598-017-18434-3
Descripción
Sumario:The effect of microstructure on the impact toughness and the temper embrittlement of a SA508Gr.4N steel was investigated. Martensitic and bainitic structures formed in this material were examined via scanning electron microscopy, electron backscatter diffraction, transmission electron microscopy, and Auger electron spectroscopy (AES) analysis. The martensitic structure had a positive effect on both the strength and toughness. Compared with the bainitic structure, this structure consisted of smaller blocks and more high-angle grain boundaries (HAGBs). Changes in the ultimate tensile strength and toughness of the martensitic structure were attributed to an increase in the crack propagation path. This increase resulted from an increased number of HAGBs and refinement of the sub-structure (block). The AES results revealed that sulfur segregation is higher in the martensitic structure than in the bainitic structure. Therefore, the martensitic structure is more susceptible to temper embrittlement than the bainitic structure.