Cargando…

Response speed control of helicity inversion based on a “regulatory enzyme”-like strategy

In biological systems, there are many signal transduction cascades in which a chemical signal is transferred as a series of chemical events. Such successive reaction systems are advantageous because the efficiency of the functions can be finely controlled by regulatory enzymes at an earlier stage. H...

Descripción completa

Detalles Bibliográficos
Autores principales: Sairenji, Shiho, Akine, Shigehisa, Nabeshima, Tatsuya
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5760571/
https://www.ncbi.nlm.nih.gov/pubmed/29317654
http://dx.doi.org/10.1038/s41598-017-16503-1
Descripción
Sumario:In biological systems, there are many signal transduction cascades in which a chemical signal is transferred as a series of chemical events. Such successive reaction systems are advantageous because the efficiency of the functions can be finely controlled by regulatory enzymes at an earlier stage. However, most of artificial responsive molecules developed so far rely on single-step conversion, whose response speeds have been difficult to be controlled by external stimuli. In this context, developing artificial conversion systems that have a regulation step similar to the regulatory enzymes has been anticipated. Here we report a novel artificial two-step structural conversion system in which the response speed can be controlled based on a regulatory enzyme-like strategy. In this system, addition of fluoride ion caused desilylation of the siloxycarboxylate ion attached to a helical complex, resulting in the subsequent helicity inversion. The response speeds of the helicity inversion depended on the reactivity of the siloxycarboxylate ions; when a less-reactive siloxycarboxylate ion was used, the helicity inversion rate was governed by the desilylation rate. This is the first artificial responsive molecule in which the overall response speed can be controlled at the regulation step separated from the function step.