Cargando…

Precise phase demodulation of single carrier-frequency interferogram by pixel-level Lissajous figure and ellipse fitting

Phase demodulation from a single carrier-frequency fringe pattern is becoming increasingly important particularly in areas of optical metrology such as dynamic interferometry, deflectometry and profilometry. The Fourier transform (FT) method and the spatial-carrier phase-shifting technique (SCPS) ar...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Fengwei, Wu, Yongqian, Wu, Fan, König, Niels, Schmitt, Robert, Wan, Yongjian, Xu, Yan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5760581/
https://www.ncbi.nlm.nih.gov/pubmed/29317725
http://dx.doi.org/10.1038/s41598-017-18031-4
Descripción
Sumario:Phase demodulation from a single carrier-frequency fringe pattern is becoming increasingly important particularly in areas of optical metrology such as dynamic interferometry, deflectometry and profilometry. The Fourier transform (FT) method and the spatial-carrier phase-shifting technique (SCPS) are two popular and well-established approaches to demodulation. However FT has the drawback of significant edge errors because of the Gibbs effect, whilst detuning errors for the local phase shift occur when SCPS is applied. A novel demodulation method based on pixel-level Lissajous figure and ellipse fitting (PLEF) is presented in this paper. Local demodulation in the spatial domain makes PLEF more flexible than the FT method, without spectral leakage. Based on a more adaptable approach, account is taken of variations in illumination and phase distribution over a few neighboring pixels. The mathematic demodulation model is of interest and has been demonstrated via simulation. Theoretical phase extraction error is as low as 10(−4) rad. Experiments further corroborate the effectiveness of the proposed method. In conclusion, various influencing factors, e.g. variations of background/modulation, phase amplitude, carrier frequency, additive noise that may affect the precision of PLEF are discussed in detail.