Cargando…
Fibroblast Growth Factor (FGF) 23 Regulates the Plasma Levels of Parathyroid Hormone In Vivo Through the FGF Receptor in Normocalcemia, But Not in Hypocalcemia
The calcium and phosphate homeostasis is regulated by a complex interplay between parathyroid hormone (PTH), fibroblast growth factor 23 (FGF23), and calcitriol. Experimental studies have demonstrated an inhibitory effect of FG23 on PTH production and secretion; the physiological role of this regula...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5760590/ https://www.ncbi.nlm.nih.gov/pubmed/29063159 http://dx.doi.org/10.1007/s00223-017-0333-9 |
_version_ | 1783291388386869248 |
---|---|
author | Mace, Maria L. Gravesen, Eva Nordholm, Anders Olgaard, Klaus Lewin, Ewa |
author_facet | Mace, Maria L. Gravesen, Eva Nordholm, Anders Olgaard, Klaus Lewin, Ewa |
author_sort | Mace, Maria L. |
collection | PubMed |
description | The calcium and phosphate homeostasis is regulated by a complex interplay between parathyroid hormone (PTH), fibroblast growth factor 23 (FGF23), and calcitriol. Experimental studies have demonstrated an inhibitory effect of FG23 on PTH production and secretion; the physiological role of this regulation is however not well understood. Surprisingly, in uremia, concomitantly elevated FGF23 and PTH levels are observed. The parathyroid gland rapidly loses its responsiveness to extracellular calcium in vitro and a functional parathyroid cell line has currently not been established. Therefore, the aim of the present investigation was to study the impact of FGF23 on the Ca(2+)/PTH relationship in vivo under conditions of normocalcemia and hypocalcemia. Wistar rats were allocated to treatment with intravenous recombinant FGF23 and inhibition of the FGF receptor in the setting of normocalcemia and acute hypocalcemia. We demonstrated that FGF23 rapidly inhibited PTH secretion and that this effect was completely blocked by inhibition of the FGF receptor. Furthermore, inhibition of the FGF receptor by itself significantly increased PTH levels, indicating that FGF23 has a suppressive tonus on the parathyroid gland’s PTH secretion. In acute hypocalcemia, there was no effect of either recombinant FGF23 or FGF receptor inhibition on the physiological response to the low ionized calcium levels. In conclusion, FGF23 has an inhibitory tonus on PTH secretion in normocalcemia and signals through the FGF receptor. In acute hypocalcemia, when increased PTH secretion is needed to restore the calcium homeostasis, this inhibitory effect of FGF23 is abolished. |
format | Online Article Text |
id | pubmed-5760590 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Springer US |
record_format | MEDLINE/PubMed |
spelling | pubmed-57605902018-01-22 Fibroblast Growth Factor (FGF) 23 Regulates the Plasma Levels of Parathyroid Hormone In Vivo Through the FGF Receptor in Normocalcemia, But Not in Hypocalcemia Mace, Maria L. Gravesen, Eva Nordholm, Anders Olgaard, Klaus Lewin, Ewa Calcif Tissue Int Original Research The calcium and phosphate homeostasis is regulated by a complex interplay between parathyroid hormone (PTH), fibroblast growth factor 23 (FGF23), and calcitriol. Experimental studies have demonstrated an inhibitory effect of FG23 on PTH production and secretion; the physiological role of this regulation is however not well understood. Surprisingly, in uremia, concomitantly elevated FGF23 and PTH levels are observed. The parathyroid gland rapidly loses its responsiveness to extracellular calcium in vitro and a functional parathyroid cell line has currently not been established. Therefore, the aim of the present investigation was to study the impact of FGF23 on the Ca(2+)/PTH relationship in vivo under conditions of normocalcemia and hypocalcemia. Wistar rats were allocated to treatment with intravenous recombinant FGF23 and inhibition of the FGF receptor in the setting of normocalcemia and acute hypocalcemia. We demonstrated that FGF23 rapidly inhibited PTH secretion and that this effect was completely blocked by inhibition of the FGF receptor. Furthermore, inhibition of the FGF receptor by itself significantly increased PTH levels, indicating that FGF23 has a suppressive tonus on the parathyroid gland’s PTH secretion. In acute hypocalcemia, there was no effect of either recombinant FGF23 or FGF receptor inhibition on the physiological response to the low ionized calcium levels. In conclusion, FGF23 has an inhibitory tonus on PTH secretion in normocalcemia and signals through the FGF receptor. In acute hypocalcemia, when increased PTH secretion is needed to restore the calcium homeostasis, this inhibitory effect of FGF23 is abolished. Springer US 2017-10-23 2018 /pmc/articles/PMC5760590/ /pubmed/29063159 http://dx.doi.org/10.1007/s00223-017-0333-9 Text en © The Author(s) 2017 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
spellingShingle | Original Research Mace, Maria L. Gravesen, Eva Nordholm, Anders Olgaard, Klaus Lewin, Ewa Fibroblast Growth Factor (FGF) 23 Regulates the Plasma Levels of Parathyroid Hormone In Vivo Through the FGF Receptor in Normocalcemia, But Not in Hypocalcemia |
title | Fibroblast Growth Factor (FGF) 23 Regulates the Plasma Levels of Parathyroid Hormone In Vivo Through the FGF Receptor in Normocalcemia, But Not in Hypocalcemia |
title_full | Fibroblast Growth Factor (FGF) 23 Regulates the Plasma Levels of Parathyroid Hormone In Vivo Through the FGF Receptor in Normocalcemia, But Not in Hypocalcemia |
title_fullStr | Fibroblast Growth Factor (FGF) 23 Regulates the Plasma Levels of Parathyroid Hormone In Vivo Through the FGF Receptor in Normocalcemia, But Not in Hypocalcemia |
title_full_unstemmed | Fibroblast Growth Factor (FGF) 23 Regulates the Plasma Levels of Parathyroid Hormone In Vivo Through the FGF Receptor in Normocalcemia, But Not in Hypocalcemia |
title_short | Fibroblast Growth Factor (FGF) 23 Regulates the Plasma Levels of Parathyroid Hormone In Vivo Through the FGF Receptor in Normocalcemia, But Not in Hypocalcemia |
title_sort | fibroblast growth factor (fgf) 23 regulates the plasma levels of parathyroid hormone in vivo through the fgf receptor in normocalcemia, but not in hypocalcemia |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5760590/ https://www.ncbi.nlm.nih.gov/pubmed/29063159 http://dx.doi.org/10.1007/s00223-017-0333-9 |
work_keys_str_mv | AT macemarial fibroblastgrowthfactorfgf23regulatestheplasmalevelsofparathyroidhormoneinvivothroughthefgfreceptorinnormocalcemiabutnotinhypocalcemia AT graveseneva fibroblastgrowthfactorfgf23regulatestheplasmalevelsofparathyroidhormoneinvivothroughthefgfreceptorinnormocalcemiabutnotinhypocalcemia AT nordholmanders fibroblastgrowthfactorfgf23regulatestheplasmalevelsofparathyroidhormoneinvivothroughthefgfreceptorinnormocalcemiabutnotinhypocalcemia AT olgaardklaus fibroblastgrowthfactorfgf23regulatestheplasmalevelsofparathyroidhormoneinvivothroughthefgfreceptorinnormocalcemiabutnotinhypocalcemia AT lewinewa fibroblastgrowthfactorfgf23regulatestheplasmalevelsofparathyroidhormoneinvivothroughthefgfreceptorinnormocalcemiabutnotinhypocalcemia |