Cargando…

Guiding of relativistic electron beams in dense matter by laser-driven magnetostatic fields

Intense lasers interacting with dense targets accelerate relativistic electron beams, which transport part of the laser energy into the target depth. However, the overall laser-to-target energy coupling efficiency is impaired by the large divergence of the electron beam, intrinsic to the laser–plasm...

Descripción completa

Detalles Bibliográficos
Autores principales: Bailly-Grandvaux, M., Santos, J. J., Bellei, C., Forestier-Colleoni, P., Fujioka, S., Giuffrida, L., Honrubia, J. J., Batani, D., Bouillaud, R., Chevrot, M., Cross, J. E., Crowston, R., Dorard, S., Dubois, J.-L., Ehret, M., Gregori, G., Hulin, S., Kojima, S., Loyez, E., Marquès, J.-R., Morace, A., Nicolaï, Ph., Roth, M., Sakata, S., Schaumann, G., Serres, F., Servel, J., Tikhonchuk, V. T., Woolsey, N., Zhang, Z.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5760627/
https://www.ncbi.nlm.nih.gov/pubmed/29317653
http://dx.doi.org/10.1038/s41467-017-02641-7
_version_ 1783291396954783744
author Bailly-Grandvaux, M.
Santos, J. J.
Bellei, C.
Forestier-Colleoni, P.
Fujioka, S.
Giuffrida, L.
Honrubia, J. J.
Batani, D.
Bouillaud, R.
Chevrot, M.
Cross, J. E.
Crowston, R.
Dorard, S.
Dubois, J.-L.
Ehret, M.
Gregori, G.
Hulin, S.
Kojima, S.
Loyez, E.
Marquès, J.-R.
Morace, A.
Nicolaï, Ph.
Roth, M.
Sakata, S.
Schaumann, G.
Serres, F.
Servel, J.
Tikhonchuk, V. T.
Woolsey, N.
Zhang, Z.
author_facet Bailly-Grandvaux, M.
Santos, J. J.
Bellei, C.
Forestier-Colleoni, P.
Fujioka, S.
Giuffrida, L.
Honrubia, J. J.
Batani, D.
Bouillaud, R.
Chevrot, M.
Cross, J. E.
Crowston, R.
Dorard, S.
Dubois, J.-L.
Ehret, M.
Gregori, G.
Hulin, S.
Kojima, S.
Loyez, E.
Marquès, J.-R.
Morace, A.
Nicolaï, Ph.
Roth, M.
Sakata, S.
Schaumann, G.
Serres, F.
Servel, J.
Tikhonchuk, V. T.
Woolsey, N.
Zhang, Z.
author_sort Bailly-Grandvaux, M.
collection PubMed
description Intense lasers interacting with dense targets accelerate relativistic electron beams, which transport part of the laser energy into the target depth. However, the overall laser-to-target energy coupling efficiency is impaired by the large divergence of the electron beam, intrinsic to the laser–plasma interaction. Here we demonstrate that an efficient guiding of MeV electrons with about 30 MA current in solid matter is obtained by imposing a laser-driven longitudinal magnetostatic field of 600 T. In the magnetized conditions the transported energy density and the peak background electron temperature at the 60-μm-thick target's rear surface rise by about a factor of five, as unfolded from benchmarked simulations. Such an improvement of energy-density flux through dense matter paves the ground for advances in laser-driven intense sources of energetic particles and radiation, driving matter to extreme temperatures, reaching states relevant for planetary or stellar science as yet inaccessible at the laboratory scale and achieving high-gain laser-driven thermonuclear fusion.
format Online
Article
Text
id pubmed-5760627
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-57606272018-01-12 Guiding of relativistic electron beams in dense matter by laser-driven magnetostatic fields Bailly-Grandvaux, M. Santos, J. J. Bellei, C. Forestier-Colleoni, P. Fujioka, S. Giuffrida, L. Honrubia, J. J. Batani, D. Bouillaud, R. Chevrot, M. Cross, J. E. Crowston, R. Dorard, S. Dubois, J.-L. Ehret, M. Gregori, G. Hulin, S. Kojima, S. Loyez, E. Marquès, J.-R. Morace, A. Nicolaï, Ph. Roth, M. Sakata, S. Schaumann, G. Serres, F. Servel, J. Tikhonchuk, V. T. Woolsey, N. Zhang, Z. Nat Commun Article Intense lasers interacting with dense targets accelerate relativistic electron beams, which transport part of the laser energy into the target depth. However, the overall laser-to-target energy coupling efficiency is impaired by the large divergence of the electron beam, intrinsic to the laser–plasma interaction. Here we demonstrate that an efficient guiding of MeV electrons with about 30 MA current in solid matter is obtained by imposing a laser-driven longitudinal magnetostatic field of 600 T. In the magnetized conditions the transported energy density and the peak background electron temperature at the 60-μm-thick target's rear surface rise by about a factor of five, as unfolded from benchmarked simulations. Such an improvement of energy-density flux through dense matter paves the ground for advances in laser-driven intense sources of energetic particles and radiation, driving matter to extreme temperatures, reaching states relevant for planetary or stellar science as yet inaccessible at the laboratory scale and achieving high-gain laser-driven thermonuclear fusion. Nature Publishing Group UK 2018-01-09 /pmc/articles/PMC5760627/ /pubmed/29317653 http://dx.doi.org/10.1038/s41467-017-02641-7 Text en © The Author(s) 2017 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Bailly-Grandvaux, M.
Santos, J. J.
Bellei, C.
Forestier-Colleoni, P.
Fujioka, S.
Giuffrida, L.
Honrubia, J. J.
Batani, D.
Bouillaud, R.
Chevrot, M.
Cross, J. E.
Crowston, R.
Dorard, S.
Dubois, J.-L.
Ehret, M.
Gregori, G.
Hulin, S.
Kojima, S.
Loyez, E.
Marquès, J.-R.
Morace, A.
Nicolaï, Ph.
Roth, M.
Sakata, S.
Schaumann, G.
Serres, F.
Servel, J.
Tikhonchuk, V. T.
Woolsey, N.
Zhang, Z.
Guiding of relativistic electron beams in dense matter by laser-driven magnetostatic fields
title Guiding of relativistic electron beams in dense matter by laser-driven magnetostatic fields
title_full Guiding of relativistic electron beams in dense matter by laser-driven magnetostatic fields
title_fullStr Guiding of relativistic electron beams in dense matter by laser-driven magnetostatic fields
title_full_unstemmed Guiding of relativistic electron beams in dense matter by laser-driven magnetostatic fields
title_short Guiding of relativistic electron beams in dense matter by laser-driven magnetostatic fields
title_sort guiding of relativistic electron beams in dense matter by laser-driven magnetostatic fields
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5760627/
https://www.ncbi.nlm.nih.gov/pubmed/29317653
http://dx.doi.org/10.1038/s41467-017-02641-7
work_keys_str_mv AT baillygrandvauxm guidingofrelativisticelectronbeamsindensematterbylaserdrivenmagnetostaticfields
AT santosjj guidingofrelativisticelectronbeamsindensematterbylaserdrivenmagnetostaticfields
AT belleic guidingofrelativisticelectronbeamsindensematterbylaserdrivenmagnetostaticfields
AT forestiercolleonip guidingofrelativisticelectronbeamsindensematterbylaserdrivenmagnetostaticfields
AT fujiokas guidingofrelativisticelectronbeamsindensematterbylaserdrivenmagnetostaticfields
AT giuffridal guidingofrelativisticelectronbeamsindensematterbylaserdrivenmagnetostaticfields
AT honrubiajj guidingofrelativisticelectronbeamsindensematterbylaserdrivenmagnetostaticfields
AT batanid guidingofrelativisticelectronbeamsindensematterbylaserdrivenmagnetostaticfields
AT bouillaudr guidingofrelativisticelectronbeamsindensematterbylaserdrivenmagnetostaticfields
AT chevrotm guidingofrelativisticelectronbeamsindensematterbylaserdrivenmagnetostaticfields
AT crossje guidingofrelativisticelectronbeamsindensematterbylaserdrivenmagnetostaticfields
AT crowstonr guidingofrelativisticelectronbeamsindensematterbylaserdrivenmagnetostaticfields
AT dorards guidingofrelativisticelectronbeamsindensematterbylaserdrivenmagnetostaticfields
AT duboisjl guidingofrelativisticelectronbeamsindensematterbylaserdrivenmagnetostaticfields
AT ehretm guidingofrelativisticelectronbeamsindensematterbylaserdrivenmagnetostaticfields
AT gregorig guidingofrelativisticelectronbeamsindensematterbylaserdrivenmagnetostaticfields
AT hulins guidingofrelativisticelectronbeamsindensematterbylaserdrivenmagnetostaticfields
AT kojimas guidingofrelativisticelectronbeamsindensematterbylaserdrivenmagnetostaticfields
AT loyeze guidingofrelativisticelectronbeamsindensematterbylaserdrivenmagnetostaticfields
AT marquesjr guidingofrelativisticelectronbeamsindensematterbylaserdrivenmagnetostaticfields
AT moracea guidingofrelativisticelectronbeamsindensematterbylaserdrivenmagnetostaticfields
AT nicolaiph guidingofrelativisticelectronbeamsindensematterbylaserdrivenmagnetostaticfields
AT rothm guidingofrelativisticelectronbeamsindensematterbylaserdrivenmagnetostaticfields
AT sakatas guidingofrelativisticelectronbeamsindensematterbylaserdrivenmagnetostaticfields
AT schaumanng guidingofrelativisticelectronbeamsindensematterbylaserdrivenmagnetostaticfields
AT serresf guidingofrelativisticelectronbeamsindensematterbylaserdrivenmagnetostaticfields
AT servelj guidingofrelativisticelectronbeamsindensematterbylaserdrivenmagnetostaticfields
AT tikhonchukvt guidingofrelativisticelectronbeamsindensematterbylaserdrivenmagnetostaticfields
AT woolseyn guidingofrelativisticelectronbeamsindensematterbylaserdrivenmagnetostaticfields
AT zhangz guidingofrelativisticelectronbeamsindensematterbylaserdrivenmagnetostaticfields