Cargando…
Experimental noise cutoff boosts inferability of transcriptional networks in large-scale gene-deletion studies
Generating a comprehensive map of molecular interactions in living cells is difficult and great efforts are undertaken to infer molecular interactions from large-scale perturbation experiments. Here, we develop the analytical and numerical tools to quantify the fundamental limits for inferring trans...
Autores principales: | Blum, C. F., Heramvand, N., Khonsari, A. S., Kollmann, M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5760630/ https://www.ncbi.nlm.nih.gov/pubmed/29317620 http://dx.doi.org/10.1038/s41467-017-02489-x |
Ejemplares similares
-
Neural networks with circular filters enable data efficient inference of sequence motifs
por: Blum, Christopher F, et al.
Publicado: (2019) -
An effect of large-scale deletions and duplications on transcript expression
por: Mielczarek, Magda, et al.
Publicado: (2022) -
ENNET: inferring large gene regulatory networks from expression data using gradient boosting
por: Sławek, Janusz, et al.
Publicado: (2013) -
Impact of Noise on Molecular Network Inference
por: Nagarajan, Radhakrishnan, et al.
Publicado: (2013) -
Information-Theoretic Inference of Large Transcriptional Regulatory Networks
por: Meyer, Patrick E, et al.
Publicado: (2007)