Cargando…

Mechanism and structural diversity of exoribonuclease-resistant RNA structures in flaviviral RNAs

Flaviviruses such as Yellow fever, Dengue, West Nile, and Zika generate disease-linked viral noncoding RNAs called subgenomic flavivirus RNAs. Subgenomic flavivirus RNAs result when the 5′–3′ progression of cellular exoribonuclease Xrn1 is blocked by RNA elements called Xrn1-resistant RNAs located w...

Descripción completa

Detalles Bibliográficos
Autores principales: MacFadden, Andrea, O’Donoghue, Zoe, Silva, Patricia A. G. C., Chapman, Erich G., Olsthoorn, René C., Sterken, Mark G., Pijlman, Gorben P., Bredenbeek, Peter J., Kieft, Jeffrey S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5760640/
https://www.ncbi.nlm.nih.gov/pubmed/29317714
http://dx.doi.org/10.1038/s41467-017-02604-y
_version_ 1783291400030257152
author MacFadden, Andrea
O’Donoghue, Zoe
Silva, Patricia A. G. C.
Chapman, Erich G.
Olsthoorn, René C.
Sterken, Mark G.
Pijlman, Gorben P.
Bredenbeek, Peter J.
Kieft, Jeffrey S.
author_facet MacFadden, Andrea
O’Donoghue, Zoe
Silva, Patricia A. G. C.
Chapman, Erich G.
Olsthoorn, René C.
Sterken, Mark G.
Pijlman, Gorben P.
Bredenbeek, Peter J.
Kieft, Jeffrey S.
author_sort MacFadden, Andrea
collection PubMed
description Flaviviruses such as Yellow fever, Dengue, West Nile, and Zika generate disease-linked viral noncoding RNAs called subgenomic flavivirus RNAs. Subgenomic flavivirus RNAs result when the 5′–3′ progression of cellular exoribonuclease Xrn1 is blocked by RNA elements called Xrn1-resistant RNAs located within the viral genome’s 3′-untranslated region that operate without protein co-factors. Here, we show that Xrn1-resistant RNAs can halt diverse exoribonucleases, revealing a mechanism in which they act as general mechanical blocks that ‘brace’ against an enzyme’s surface, presenting an unfolding problem that confounds further enzyme progression. Further, we directly demonstrate that Xrn1-resistant RNAs exist in a diverse set of flaviviruses, including some specific to insects or with no known arthropod vector. These Xrn1-resistant RNAs comprise two secondary structural classes that mirror previously reported phylogenic analysis. Our discoveries have implications for the evolution of exoribonuclease resistance, the use of Xrn1-resistant RNAs in synthetic biology, and the development of new therapies.
format Online
Article
Text
id pubmed-5760640
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-57606402018-01-12 Mechanism and structural diversity of exoribonuclease-resistant RNA structures in flaviviral RNAs MacFadden, Andrea O’Donoghue, Zoe Silva, Patricia A. G. C. Chapman, Erich G. Olsthoorn, René C. Sterken, Mark G. Pijlman, Gorben P. Bredenbeek, Peter J. Kieft, Jeffrey S. Nat Commun Article Flaviviruses such as Yellow fever, Dengue, West Nile, and Zika generate disease-linked viral noncoding RNAs called subgenomic flavivirus RNAs. Subgenomic flavivirus RNAs result when the 5′–3′ progression of cellular exoribonuclease Xrn1 is blocked by RNA elements called Xrn1-resistant RNAs located within the viral genome’s 3′-untranslated region that operate without protein co-factors. Here, we show that Xrn1-resistant RNAs can halt diverse exoribonucleases, revealing a mechanism in which they act as general mechanical blocks that ‘brace’ against an enzyme’s surface, presenting an unfolding problem that confounds further enzyme progression. Further, we directly demonstrate that Xrn1-resistant RNAs exist in a diverse set of flaviviruses, including some specific to insects or with no known arthropod vector. These Xrn1-resistant RNAs comprise two secondary structural classes that mirror previously reported phylogenic analysis. Our discoveries have implications for the evolution of exoribonuclease resistance, the use of Xrn1-resistant RNAs in synthetic biology, and the development of new therapies. Nature Publishing Group UK 2018-01-09 /pmc/articles/PMC5760640/ /pubmed/29317714 http://dx.doi.org/10.1038/s41467-017-02604-y Text en © The Author(s) 2017 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
MacFadden, Andrea
O’Donoghue, Zoe
Silva, Patricia A. G. C.
Chapman, Erich G.
Olsthoorn, René C.
Sterken, Mark G.
Pijlman, Gorben P.
Bredenbeek, Peter J.
Kieft, Jeffrey S.
Mechanism and structural diversity of exoribonuclease-resistant RNA structures in flaviviral RNAs
title Mechanism and structural diversity of exoribonuclease-resistant RNA structures in flaviviral RNAs
title_full Mechanism and structural diversity of exoribonuclease-resistant RNA structures in flaviviral RNAs
title_fullStr Mechanism and structural diversity of exoribonuclease-resistant RNA structures in flaviviral RNAs
title_full_unstemmed Mechanism and structural diversity of exoribonuclease-resistant RNA structures in flaviviral RNAs
title_short Mechanism and structural diversity of exoribonuclease-resistant RNA structures in flaviviral RNAs
title_sort mechanism and structural diversity of exoribonuclease-resistant rna structures in flaviviral rnas
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5760640/
https://www.ncbi.nlm.nih.gov/pubmed/29317714
http://dx.doi.org/10.1038/s41467-017-02604-y
work_keys_str_mv AT macfaddenandrea mechanismandstructuraldiversityofexoribonucleaseresistantrnastructuresinflaviviralrnas
AT odonoghuezoe mechanismandstructuraldiversityofexoribonucleaseresistantrnastructuresinflaviviralrnas
AT silvapatriciaagc mechanismandstructuraldiversityofexoribonucleaseresistantrnastructuresinflaviviralrnas
AT chapmanerichg mechanismandstructuraldiversityofexoribonucleaseresistantrnastructuresinflaviviralrnas
AT olsthoornrenec mechanismandstructuraldiversityofexoribonucleaseresistantrnastructuresinflaviviralrnas
AT sterkenmarkg mechanismandstructuraldiversityofexoribonucleaseresistantrnastructuresinflaviviralrnas
AT pijlmangorbenp mechanismandstructuraldiversityofexoribonucleaseresistantrnastructuresinflaviviralrnas
AT bredenbeekpeterj mechanismandstructuraldiversityofexoribonucleaseresistantrnastructuresinflaviviralrnas
AT kieftjeffreys mechanismandstructuraldiversityofexoribonucleaseresistantrnastructuresinflaviviralrnas