Cargando…
Preparation and evaluation of monolithic molecularly imprinted stationary phase for S-naproxen
An S-naproxen (S-NAP) molecularly imprinted monolithic stationary phase (MIMSP) with specific recognition for S-NAP and naproxen (NAP) was prepared by in situ technique, utilizing 4-vinylpridine (4-VP) as a function monomer, ethylene glycol dimethacrylate (EDMA) as a cross-linking agent, and low-pol...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Xi'an Jiaotong University
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5760767/ https://www.ncbi.nlm.nih.gov/pubmed/29403678 http://dx.doi.org/10.1016/S2095-1779(11)70005-3 |
_version_ | 1783291429763678208 |
---|---|
author | Chen, De-Miao Fu, Qiang Du, Wei Sun, Si-Juan Huang, Ping Chang, Chun |
author_facet | Chen, De-Miao Fu, Qiang Du, Wei Sun, Si-Juan Huang, Ping Chang, Chun |
author_sort | Chen, De-Miao |
collection | PubMed |
description | An S-naproxen (S-NAP) molecularly imprinted monolithic stationary phase (MIMSP) with specific recognition for S-NAP and naproxen (NAP) was prepared by in situ technique, utilizing 4-vinylpridine (4-VP) as a function monomer, ethylene glycol dimethacrylate (EDMA) as a cross-linking agent, and low-polar solvents (toluene and dodecanol) as porogenic solvents. The selectivity of the polymers for S-NAP and NAP was evaluated by high performance liquid chromatography (HPLC). The binding characteristics were tested by Scatchard analysis. Racemic NAP could be specifically separated to some extent. At the same time, NAP could be separated from ibuprofen under optimized conditions. Scatchard analysis showed that two classes of binding sites existed in the S-NAP-imprinted polymers, with their dissociation constants estimated to be 1.045 and 5.496 μM, respectively. The results demonstrate that S-NAP and NAP can be recognized specifically on the obtained MIMSP. |
format | Online Article Text |
id | pubmed-5760767 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | Xi'an Jiaotong University |
record_format | MEDLINE/PubMed |
spelling | pubmed-57607672018-02-05 Preparation and evaluation of monolithic molecularly imprinted stationary phase for S-naproxen Chen, De-Miao Fu, Qiang Du, Wei Sun, Si-Juan Huang, Ping Chang, Chun J Pharm Anal Original article An S-naproxen (S-NAP) molecularly imprinted monolithic stationary phase (MIMSP) with specific recognition for S-NAP and naproxen (NAP) was prepared by in situ technique, utilizing 4-vinylpridine (4-VP) as a function monomer, ethylene glycol dimethacrylate (EDMA) as a cross-linking agent, and low-polar solvents (toluene and dodecanol) as porogenic solvents. The selectivity of the polymers for S-NAP and NAP was evaluated by high performance liquid chromatography (HPLC). The binding characteristics were tested by Scatchard analysis. Racemic NAP could be specifically separated to some extent. At the same time, NAP could be separated from ibuprofen under optimized conditions. Scatchard analysis showed that two classes of binding sites existed in the S-NAP-imprinted polymers, with their dissociation constants estimated to be 1.045 and 5.496 μM, respectively. The results demonstrate that S-NAP and NAP can be recognized specifically on the obtained MIMSP. Xi'an Jiaotong University 2011-02 2012-01-30 /pmc/articles/PMC5760767/ /pubmed/29403678 http://dx.doi.org/10.1016/S2095-1779(11)70005-3 Text en . http://creativecommons.org/licenses/by-nc-nd/3.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/). |
spellingShingle | Original article Chen, De-Miao Fu, Qiang Du, Wei Sun, Si-Juan Huang, Ping Chang, Chun Preparation and evaluation of monolithic molecularly imprinted stationary phase for S-naproxen |
title | Preparation and evaluation of monolithic molecularly imprinted stationary phase for S-naproxen |
title_full | Preparation and evaluation of monolithic molecularly imprinted stationary phase for S-naproxen |
title_fullStr | Preparation and evaluation of monolithic molecularly imprinted stationary phase for S-naproxen |
title_full_unstemmed | Preparation and evaluation of monolithic molecularly imprinted stationary phase for S-naproxen |
title_short | Preparation and evaluation of monolithic molecularly imprinted stationary phase for S-naproxen |
title_sort | preparation and evaluation of monolithic molecularly imprinted stationary phase for s-naproxen |
topic | Original article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5760767/ https://www.ncbi.nlm.nih.gov/pubmed/29403678 http://dx.doi.org/10.1016/S2095-1779(11)70005-3 |
work_keys_str_mv | AT chendemiao preparationandevaluationofmonolithicmolecularlyimprintedstationaryphaseforsnaproxen AT fuqiang preparationandevaluationofmonolithicmolecularlyimprintedstationaryphaseforsnaproxen AT duwei preparationandevaluationofmonolithicmolecularlyimprintedstationaryphaseforsnaproxen AT sunsijuan preparationandevaluationofmonolithicmolecularlyimprintedstationaryphaseforsnaproxen AT huangping preparationandevaluationofmonolithicmolecularlyimprintedstationaryphaseforsnaproxen AT changchun preparationandevaluationofmonolithicmolecularlyimprintedstationaryphaseforsnaproxen |