Cargando…
Cytotoxicity and cellular imaging of quantum dots protected by polyelectrolyte
The nanocomposites of poly-diallyldimethylammonium chloride (PDADMAC) and CdTe quantum dots (QDs) (i.e. QDs-PDADMAC nanocomposites) have been prepared based on electrostatic interaction and their fluorescence stability in aqueous solution has been investigated. MTT method (3-(4, 5-dimethylthiazol-2-...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Xi'an Jiaotong University
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5760892/ https://www.ncbi.nlm.nih.gov/pubmed/29403756 http://dx.doi.org/10.1016/j.jpha.2012.02.003 |
Sumario: | The nanocomposites of poly-diallyldimethylammonium chloride (PDADMAC) and CdTe quantum dots (QDs) (i.e. QDs-PDADMAC nanocomposites) have been prepared based on electrostatic interaction and their fluorescence stability in aqueous solution has been investigated. MTT method (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide method) was used to study their cytotoxicity and A549 lung cancer cell as a model cell was also used to evaluate their cellular imaging. It was shown that the fluorescence stability of QDs-PDADMAC nanocomposites was much better than that of bare QDs both in aqueous solution and cell. Meanwhile, QDs-PDADMAC nanocomposites display very low cytotoxicity in the low concentrations and better staining ability compared with QDs. QDs-PDADMAC nanocomposites will have great advantage on the cell analysis detection and imaging. |
---|