Cargando…

Does mycorrhizal status alter herbivore-induced changes in whole-plant resource partitioning?

Both mycorrhizae and herbivore damage cause rapid changes in source–sink dynamics within a plant. Mycorrhizae create long-term sinks for carbon within the roots while damage by leaf-chewing herbivores causes temporary whole-plant shifts in carbon and nitrogen allocation. Thus, induced responses to h...

Descripción completa

Detalles Bibliográficos
Autores principales: Orians, Colin M, Gomez, Sara, Korpita, Timothy
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5761529/
https://www.ncbi.nlm.nih.gov/pubmed/29340134
http://dx.doi.org/10.1093/aobpla/plx071
Descripción
Sumario:Both mycorrhizae and herbivore damage cause rapid changes in source–sink dynamics within a plant. Mycorrhizae create long-term sinks for carbon within the roots while damage by leaf-chewing herbivores causes temporary whole-plant shifts in carbon and nitrogen allocation. Thus, induced responses to herbivory might depend on the presence or absence of mycorrhizae. We examined the effects of mycorrhizal presence on induced resource partitioning in tomato (Solanum lycopersicon) in response to cues from a specialist herbivore Manduca sexta. Differences in plant size, growth and in the concentrations of carbon-based (soluble sugars and starch) and nitrogen-based (protein and total nitrogen) resources in three tissue types (apex, stem and roots) were quantified. Both mycorrhizae and simulated herbivory altered the concentrations of carbon- and nitrogen-based resources. Mycorrhizae promoted plant growth, altered sugar and starch levels. Simulated herbivory resulted in lower concentrations of most resources (sugar, starch and protein) in the rapidly growing apex tissue, while causing an increase in stem protein. There was only one interactive effect; the effects of simulated herbivory were much stronger on the sugar concentration in the apex of non-mycorrhizal plants. This clearly demonstrates that both mycorrhizal colonization and herbivore cues cause shifts in carbon- and nitrogen-based resources and further shows there is little interference by mycorrhizae on the direction and magnitude of plant responses to herbivory. Overall, our results suggest that herbivore cues, regardless of mycorrhizal status, reduce allocation to the growing apex while inducing protein storage in the stem, a possible mechanism that could increase the tolerance of plants to damage.