Cargando…
Improved Prediction of the Pathologic Stage of Patient With Prostate Cancer Using the CART–PSO Optimization Analysis in the Korean Population
OBJECTIVE: In current practice, medical experts use the pathological stage predictions provided in the Partin tables to support their decisions. Hence, the Partin tables are based on logistic regression built from the US data. In the present study, we developed a data-mining model to predict the pat...
Autores principales: | Kim, Jae Kwon, Rho, Mi Jung, Lee, Jong Sik, Park, Yong Hyun, Lee, Ji Youl, Choi, In Young |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5762028/ http://dx.doi.org/10.1177/1533034616681396 |
Ejemplares similares
-
A Deep Belief Network and Dempster-Shafer-Based Multiclassifier for the Pathology Stage of Prostate Cancer
por: Kim, Jae Kwon, et al.
Publicado: (2018) -
Particle swarm optimization (PSO)
por: Walker, Brian
Publicado: (2017) -
Nomograms for the Prediction of Pathologic Stage of Clinically Localized Prostate Cancer in Korean Men
por: Song, Cheryn, et al.
Publicado: (2005) -
Introduction to digital pathology and computer-aided pathology
por: Nam, Soojeong, et al.
Publicado: (2020) -
Cancer Research Line (CAREL): Development of Expanded Distributed Research Networks for Prostate Cancer and Lung Cancer
por: Park, Jihwan, et al.
Publicado: (2023)