Cargando…

Expression and Clinicopathological Significance of Mel-18 and Bmi-1 in Esophageal Squamous Cell Carcinoma

The Polycomb group genes are a general class of regulators that are responsible for maintaining homeotic gene expression throughout cell division. Polycomb group expression plays an important role in oncogenesis of several types of human cancer. Melanoma nuclear protein 18 and B-cell-specific Molone...

Descripción completa

Detalles Bibliográficos
Autores principales: Ji, Huaijun, Cao, Ming, Ren, Kunlun, Sun, Ningbo, Wang, Wei, Zhu, Qiang, Zang, Qi, Jiang, Zhongmin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: SAGE Publications 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5762038/
https://www.ncbi.nlm.nih.gov/pubmed/28425347
http://dx.doi.org/10.1177/1533034617705055
Descripción
Sumario:The Polycomb group genes are a general class of regulators that are responsible for maintaining homeotic gene expression throughout cell division. Polycomb group expression plays an important role in oncogenesis of several types of human cancer. Melanoma nuclear protein 18 and B-cell-specific Moloney leukemia virus insert site 1 are key Polycomb group proteins. Studies have shown that melanoma nuclear protein 18 is a potential tumor suppression, and B-cell-specific Moloney leukemia virus insert site 1 is overexpressed in several human malignancies. However, the roles of melanoma nuclear protein 18 and B-cell-specific Moloney leukemia virus insert site 1 in esophageal squamous cell carcinoma are still unclear. In this study, we analyzed the expression levels of melanoma nuclear protein 18 and B-cell-specific Moloney leukemia virus insert site 1 in 89 esophageal cancer tissues and paired normal mucosal tissues using immunohistochemistry, Western blotting, and quantitative real-time polymerase chain reaction analyses. We found that the expression of melanoma nuclear protein 18 in the carcinoma tissues was significantly lower than that in the noncancerous mucosal tissues (P < .05), and B-cell-specific Moloney leukemia virus insert site 1 expression in the carcinoma tissues was significantly higher than that in the noncancerous mucosal tissues (P < .05). In addition, the expression of melanoma nuclear protein 18 was correlated with clinical stage, depth of invasion, and lymph node metastasis (P < .05) but was not correlated with gender, age, degree of differentiation, or disease-free survival (P > .05). B-cell-specific Moloney leukemia virus insert site 1 expression was strongly correlated with the degree of differentiation, clinical stage, and lymph node metastasis (P <.05) but was not correlated with the gender, age, depth of invasion or disease-free survival (P > .05). Moreover, there was a negative correlation between melanoma nuclear protein 18 and B-cell-specific Moloney leukemia virus insert site 1 expressions in esophageal squamous cell carcinoma (P < .05). Our study suggests that melanoma nuclear protein 18 and B-cell-specific Moloney leukemia virus insert site 1 may play a crucial role in esophageal squamous cell carcinoma. Melanoma nuclear protein 18 or B-cell-specific Moloney leukemia virus insert site 1 may be a potential biomarker for diagnosis and prognosis of esophageal squamous cell carcinoma.