Cargando…

Study and ICH validation of a reverse-phase liquid chromatographic method for the quantification of the intact monoclonal antibody cetuximab()

Cetuximab (CTX) is a potent chimeric mouse/human monoclonal antibody (mAb) approved worldwide for treatment of metastatic colorectal cancer. Among the various biological and physical analyses performed for full study on this biopharmaceutic, the determination of the concentration preparations throug...

Descripción completa

Detalles Bibliográficos
Autores principales: Martínez-Ortega, Antonio, Herrera, Agustín, Salmerón-García, Antonio, Cabeza, José, Cuadros-Rodríguez, Luis, Navas, Natalia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Xi'an Jiaotong University 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5762446/
https://www.ncbi.nlm.nih.gov/pubmed/29403971
http://dx.doi.org/10.1016/j.jpha.2015.11.007
Descripción
Sumario:Cetuximab (CTX) is a potent chimeric mouse/human monoclonal antibody (mAb) approved worldwide for treatment of metastatic colorectal cancer. Among the various biological and physical analyses performed for full study on this biopharmaceutic, the determination of the concentration preparations throughout manufacturing and subsequent handling in hospital is particularly relevant. In the present work, the study and validation of a method for quantifying intact CTX by reverse-phase high-performance liquid chromatography with diode array detection ((RP)HPLC/DAD) is presented. With that end, we checked the performance of a chromatographic method for quantifying CTX and conducted a study to validate the method as stability-indicating in accordance with the International Conference on Harmonization guidelines (ICH) for biotechnological drugs; therefore, we evaluated linearity, accuracy, precision, detection and quantification limits, robustness and system suitability. The specificity of the method and the robustness of the mAb formulation against external stress factors were estimated by comprehensive chromatographic analysis by subjecting CTX to several informative stress conditions. As demonstrated, the method is rapid, accurate, and reproducible for CTX quantification. It was also successfully used to quantify CTX in a long-term stability study performed under hospital conditions.