Cargando…
The effect of maternal vitamin D deficiency during pregnancy on body fat and adipogenesis in rat offspring
To evaluate the effects of maternal vitamin D deficiency on body fat and adipogenesis in offspring rats, and explore the potential mechanism, we constructed a vitamin D deficient rat model and performed metabolic activity evaluation, body fat monitoring, biochemical analysis, adipogenesis assay, met...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5762667/ https://www.ncbi.nlm.nih.gov/pubmed/29321608 http://dx.doi.org/10.1038/s41598-017-18770-4 |
Sumario: | To evaluate the effects of maternal vitamin D deficiency on body fat and adipogenesis in offspring rats, and explore the potential mechanism, we constructed a vitamin D deficient rat model and performed metabolic activity evaluation, body fat monitoring, biochemical analysis, adipogenesis assay, methylation microarray and RNA-seq for their offspring rats. We found the weight of vitamin D deficient (VDD) offspring was gradually higher than that of control (CLT) offspring, and the difference was significant since 10 weeks old. When compared with CTL offspring, the 24 h heat production, peak blood glucose, adipose tissue volume and blood lipid indexes were significantly increased in VDD offspring at 14 weeks old. Moreover, a significant increase in proliferation rate and number of lipid droplets for pre-adipocytes was also observed in VDD offspring group. DNA methylation profiling showed that compared to CTL group, 608 promoters and 204 CpG islands were differentially methylated in the VDD group, involving 305 genes. When combined with the results of RNA-seq, 141 genes of the methylated genes were differentially expressed. In conclusion, vitamin D deficiency during pregnancy may promote the proliferation and differentiation of pre-adipocytes, which may be associated with methylation alterations of genes, ultimately leading to offspring obesity. |
---|