Cargando…
Room temperature stable film formation of π-conjugated organic molecules on 3d magnetic substrate
An important step toward molecule-based electronics is to realize a robust and well-ordered molecular network at room temperature. To this end, one key challenge is tuning the molecule–substrate electronic interactions that influence not only the molecular selfassembly but also the stability of the...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5762783/ https://www.ncbi.nlm.nih.gov/pubmed/29321657 http://dx.doi.org/10.1038/s41598-017-18605-2 |
Sumario: | An important step toward molecule-based electronics is to realize a robust and well-ordered molecular network at room temperature. To this end, one key challenge is tuning the molecule–substrate electronic interactions that influence not only the molecular selfassembly but also the stability of the resulting structures. In this study, we investigate the film formation of π-conjugated metal-free phthalocyanine molecules on a 3d-bcc-Fe(001) whisker substrate at 300 K by using ultra-high-vacuum scanning tunneling microscopy. On bare Fe(001), hybridization between the molecular π and the Fe(001) d-states prevents the molecular assembly, resulting in the disordered patchy structures. The second- and third-layer molecules form densely packed films, while the morphologies show clear difference. The second-layer molecules partially form p(5 × 5)-ordered films with the rectangular edges aligned along the [100] and [010] directions, while the edges of the third-layer films are rounded. Remarkably, such film morphologies are stable even at 300 K. These findings suggest that the molecular self-assembly and the resulting morphologies in the second and third layers are affected by the substrate bcc(001), despite that the Fe-d states hybridize only with the first-layer molecules. The possible mechanism is discussed with the kinetic Monte Carlo simulation. |
---|