Cargando…

Discrete maximal regularity of time-stepping schemes for fractional evolution equations

In this work, we establish the maximal [Formula: see text] -regularity for several time stepping schemes for a fractional evolution model, which involves a fractional derivative of order [Formula: see text] , [Formula: see text] , in time. These schemes include convolution quadratures generated by b...

Descripción completa

Detalles Bibliográficos
Autores principales: Jin, Bangti, Li, Buyang, Zhou, Zhi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5762870/
https://www.ncbi.nlm.nih.gov/pubmed/29375159
http://dx.doi.org/10.1007/s00211-017-0904-8
Descripción
Sumario:In this work, we establish the maximal [Formula: see text] -regularity for several time stepping schemes for a fractional evolution model, which involves a fractional derivative of order [Formula: see text] , [Formula: see text] , in time. These schemes include convolution quadratures generated by backward Euler method and second-order backward difference formula, the L1 scheme, explicit Euler method and a fractional variant of the Crank–Nicolson method. The main tools for the analysis include operator-valued Fourier multiplier theorem due to Weis (Math Ann 319:735–758, 2001. doi:10.1007/PL00004457) and its discrete analogue due to Blunck (Stud Math 146:157–176, 2001. doi:10.4064/sm146-2-3). These results generalize the corresponding results for parabolic problems.