Cargando…
Discrete maximal regularity of time-stepping schemes for fractional evolution equations
In this work, we establish the maximal [Formula: see text] -regularity for several time stepping schemes for a fractional evolution model, which involves a fractional derivative of order [Formula: see text] , [Formula: see text] , in time. These schemes include convolution quadratures generated by b...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5762870/ https://www.ncbi.nlm.nih.gov/pubmed/29375159 http://dx.doi.org/10.1007/s00211-017-0904-8 |
Sumario: | In this work, we establish the maximal [Formula: see text] -regularity for several time stepping schemes for a fractional evolution model, which involves a fractional derivative of order [Formula: see text] , [Formula: see text] , in time. These schemes include convolution quadratures generated by backward Euler method and second-order backward difference formula, the L1 scheme, explicit Euler method and a fractional variant of the Crank–Nicolson method. The main tools for the analysis include operator-valued Fourier multiplier theorem due to Weis (Math Ann 319:735–758, 2001. doi:10.1007/PL00004457) and its discrete analogue due to Blunck (Stud Math 146:157–176, 2001. doi:10.4064/sm146-2-3). These results generalize the corresponding results for parabolic problems. |
---|