Cargando…
Discrete maximal regularity of time-stepping schemes for fractional evolution equations
In this work, we establish the maximal [Formula: see text] -regularity for several time stepping schemes for a fractional evolution model, which involves a fractional derivative of order [Formula: see text] , [Formula: see text] , in time. These schemes include convolution quadratures generated by b...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5762870/ https://www.ncbi.nlm.nih.gov/pubmed/29375159 http://dx.doi.org/10.1007/s00211-017-0904-8 |
_version_ | 1783291779557097472 |
---|---|
author | Jin, Bangti Li, Buyang Zhou, Zhi |
author_facet | Jin, Bangti Li, Buyang Zhou, Zhi |
author_sort | Jin, Bangti |
collection | PubMed |
description | In this work, we establish the maximal [Formula: see text] -regularity for several time stepping schemes for a fractional evolution model, which involves a fractional derivative of order [Formula: see text] , [Formula: see text] , in time. These schemes include convolution quadratures generated by backward Euler method and second-order backward difference formula, the L1 scheme, explicit Euler method and a fractional variant of the Crank–Nicolson method. The main tools for the analysis include operator-valued Fourier multiplier theorem due to Weis (Math Ann 319:735–758, 2001. doi:10.1007/PL00004457) and its discrete analogue due to Blunck (Stud Math 146:157–176, 2001. doi:10.4064/sm146-2-3). These results generalize the corresponding results for parabolic problems. |
format | Online Article Text |
id | pubmed-5762870 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Springer Berlin Heidelberg |
record_format | MEDLINE/PubMed |
spelling | pubmed-57628702018-01-25 Discrete maximal regularity of time-stepping schemes for fractional evolution equations Jin, Bangti Li, Buyang Zhou, Zhi Numer Math (Heidelb) Article In this work, we establish the maximal [Formula: see text] -regularity for several time stepping schemes for a fractional evolution model, which involves a fractional derivative of order [Formula: see text] , [Formula: see text] , in time. These schemes include convolution quadratures generated by backward Euler method and second-order backward difference formula, the L1 scheme, explicit Euler method and a fractional variant of the Crank–Nicolson method. The main tools for the analysis include operator-valued Fourier multiplier theorem due to Weis (Math Ann 319:735–758, 2001. doi:10.1007/PL00004457) and its discrete analogue due to Blunck (Stud Math 146:157–176, 2001. doi:10.4064/sm146-2-3). These results generalize the corresponding results for parabolic problems. Springer Berlin Heidelberg 2017-07-22 2018 /pmc/articles/PMC5762870/ /pubmed/29375159 http://dx.doi.org/10.1007/s00211-017-0904-8 Text en © The Author(s) 2017 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
spellingShingle | Article Jin, Bangti Li, Buyang Zhou, Zhi Discrete maximal regularity of time-stepping schemes for fractional evolution equations |
title | Discrete maximal regularity of time-stepping schemes for fractional evolution equations |
title_full | Discrete maximal regularity of time-stepping schemes for fractional evolution equations |
title_fullStr | Discrete maximal regularity of time-stepping schemes for fractional evolution equations |
title_full_unstemmed | Discrete maximal regularity of time-stepping schemes for fractional evolution equations |
title_short | Discrete maximal regularity of time-stepping schemes for fractional evolution equations |
title_sort | discrete maximal regularity of time-stepping schemes for fractional evolution equations |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5762870/ https://www.ncbi.nlm.nih.gov/pubmed/29375159 http://dx.doi.org/10.1007/s00211-017-0904-8 |
work_keys_str_mv | AT jinbangti discretemaximalregularityoftimesteppingschemesforfractionalevolutionequations AT libuyang discretemaximalregularityoftimesteppingschemesforfractionalevolutionequations AT zhouzhi discretemaximalregularityoftimesteppingschemesforfractionalevolutionequations |