Cargando…

Multiscale techniques for parabolic equations

We use the local orthogonal decomposition technique introduced in Målqvist and Peterseim (Math Comput 83(290):2583–2603, 2014) to derive a generalized finite element method for linear and semilinear parabolic equations with spatial multiscale coefficients. We consider nonsmooth initial data and a ba...

Descripción completa

Detalles Bibliográficos
Autores principales: Målqvist, Axel, Persson, Anna
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5762871/
https://www.ncbi.nlm.nih.gov/pubmed/29375160
http://dx.doi.org/10.1007/s00211-017-0905-7
Descripción
Sumario:We use the local orthogonal decomposition technique introduced in Målqvist and Peterseim (Math Comput 83(290):2583–2603, 2014) to derive a generalized finite element method for linear and semilinear parabolic equations with spatial multiscale coefficients. We consider nonsmooth initial data and a backward Euler scheme for the temporal discretization. Optimal order convergence rate, depending only on the contrast, but not on the variations of the coefficients, is proven in the [Formula: see text] -norm. We present numerical examples, which confirm our theoretical findings.