Cargando…
Multiscale techniques for parabolic equations
We use the local orthogonal decomposition technique introduced in Målqvist and Peterseim (Math Comput 83(290):2583–2603, 2014) to derive a generalized finite element method for linear and semilinear parabolic equations with spatial multiscale coefficients. We consider nonsmooth initial data and a ba...
Autores principales: | Målqvist, Axel, Persson, Anna |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5762871/ https://www.ncbi.nlm.nih.gov/pubmed/29375160 http://dx.doi.org/10.1007/s00211-017-0905-7 |
Ejemplares similares
-
Adaptive Multiscale Model Reduction for Nonlinear Parabolic Equations Using GMsFEM
por: Wang, Yiran, et al.
Publicado: (2020) -
Degenerate parabolic equations
por: DiBenedetto, Emmanuele
Publicado: (1993) -
Nonlinear parabolic equations and hyperbolic-parabolic coupled systems
por: Zheng, Songmu
Publicado: (1995) -
Boundary stabilization of parabolic equations
por: Munteanu, Ionuţ
Publicado: (2019) -
Nonlinear parabolic and elliptic equations
por: Pao, C V
Publicado: (1993)