Cargando…
Force Field Parametrization of Metal Ions from Statistical Learning Techniques
[Image: see text] A novel statistical procedure has been developed to optimize the parameters of nonbonded force fields of metal ions in soft matter. The criterion for the optimization is the minimization of the deviations from ab initio forces and energies calculated for model systems. The method e...
Autores principales: | Fracchia, Francesco, Del Frate, Gianluca, Mancini, Giordano, Rocchia, Walter, Barone, Vincenzo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American
Chemical Society
2017
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5763284/ https://www.ncbi.nlm.nih.gov/pubmed/29112432 http://dx.doi.org/10.1021/acs.jctc.7b00779 |
Ejemplares similares
-
Immersive virtual reality in computational chemistry: Applications to the analysis of QM and MM data
por: Salvadori, Andrea, et al.
Publicado: (2016) -
L-DOPA and Droxidopa: From Force Field Development to Molecular Docking into Human β(2)-Adrenergic Receptor
por: Catte, Andrea, et al.
Publicado: (2022) -
Tuning of dye optical properties by environmental effects: a QM/MM and experimental study
por: Del Frate, Gianluca, et al.
Publicado: (2016) -
Force‐field parametrization based on radial and energy distribution functions
por: Chiba, Shuntaro, et al.
Publicado: (2019) -
Optimal Solution to the Torsional Coefficient Fitting
Problem in Force Field Parametrization
por: Kania, Adrian, et al.
Publicado: (2021)