Cargando…

Cell ontology in an age of data-driven cell classification

BACKGROUND: Data-driven cell classification is becoming common and is now being implemented on a massive scale by projects such as the Human Cell Atlas. The scale of these efforts poses a challenge. How can the results be made searchable and accessible to biologists in general? How can they be relat...

Descripción completa

Detalles Bibliográficos
Autor principal: Osumi-Sutherland, David
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5763290/
https://www.ncbi.nlm.nih.gov/pubmed/29322914
http://dx.doi.org/10.1186/s12859-017-1980-6
Descripción
Sumario:BACKGROUND: Data-driven cell classification is becoming common and is now being implemented on a massive scale by projects such as the Human Cell Atlas. The scale of these efforts poses a challenge. How can the results be made searchable and accessible to biologists in general? How can they be related back to the rich classical knowledge of cell-types, anatomy and development? How will data from the various types of single cell analysis be made cross-searchable? Structured annotation with ontology terms provides a potential solution to these problems. In turn, there is great potential for using the outputs of data-driven cell classification to structure ontologies and integrate them with data-driven cell query systems. RESULTS: Focusing on examples from the mouse retina and Drosophila olfactory system, I present worked examples illustrating how formalization of cell ontologies can enhance querying of data-driven cell-classifications and how ontologies can be extended by integrating the outputs of data-driven cell classifications. CONCLUSIONS: Annotation with ontology terms can play an important role in making data driven classifications searchable and query-able, but fulfilling this potential requires standardized formal patterns for structuring ontologies and annotations and for linking ontologies to the outputs of data-driven classification.