Cargando…
Hadamard Kernel SVM with applications for breast cancer outcome predictions
BACKGROUND: Breast cancer is one of the leading causes of deaths for women. It is of great necessity to develop effective methods for breast cancer detection and diagnosis. Recent studies have focused on gene-based signatures for outcome predictions. Kernel SVM for its discriminative power in dealin...
Autores principales: | Jiang, Hao, Ching, Wai-Ki, Cheung, Wai-Shun, Hou, Wenpin, Yin, Hong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5763304/ https://www.ncbi.nlm.nih.gov/pubmed/29322919 http://dx.doi.org/10.1186/s12918-017-0514-1 |
Ejemplares similares
-
Correlation Kernels for Support Vector Machines Classification with Applications in Cancer Data
por: Jiang, Hao, et al.
Publicado: (2012) -
Hadamard Matrices and Their Applications
por: Horadam, K J
Publicado: (2011) -
Hadamard matrices and their applications
por: Agaian, S S
Publicado: (1985) -
Hermite–Hadamard inequalities and their applications
por: Mihai, Marcela V., et al.
Publicado: (2018) -
Classifying DNA repair genes by kernel-based support vector machines
por: Jiang, Hao, et al.
Publicado: (2011)