Cargando…
Multiple kernels learning-based biological entity relationship extraction method
BACKGROUND: Automatic extracting protein entity interaction information from biomedical literature can help to build protein relation network and design new drugs. There are more than 20 million literature abstracts included in MEDLINE, which is the most authoritative textual database in the field o...
Autores principales: | Dongliang, Xu, Jingchang, Pan, Bailing, Wang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5763518/ https://www.ncbi.nlm.nih.gov/pubmed/29297359 http://dx.doi.org/10.1186/s13326-017-0138-9 |
Ejemplares similares
-
Biological plausibility of kernel-based learning
por: Fortney, Kristen, et al.
Publicado: (2007) -
ksrMKL: a novel method for identification of kinase–substrate relationships using multiple kernel learning
por: Wang, Minghui, et al.
Publicado: (2017) -
A Kernel-Based Approach for Biomedical Named Entity Recognition
por: Patra, Rakesh, et al.
Publicado: (2013) -
Multi-Nyström Method Based on Multiple Kernel Learning for Large Scale Imbalanced Classification
por: Wang, Ling, et al.
Publicado: (2021) -
Decoding intracranial EEG data with multiple kernel learning method
por: Schrouff, Jessica, et al.
Publicado: (2016)