Cargando…

Role of gp91phox Homolog Nox1 in Induction of Premalignant Spindle Phenotypes of HPV 16 E6/E7—Immortalized Human Keratinocytes

The NADPH oxidase (Nox) family of superoxide- and hydrogen peroxide—producing proteins has been recognized as important for signal transduction that regulates receptor-mediated functions, including cytoskeleton remodeling, cell proliferation, migration, differentiation, and cell death. Nox1 was the...

Descripción completa

Detalles Bibliográficos
Autor principal: Chamulitrat, Walee
Formato: Online Artículo Texto
Lenguaje:English
Publicado: TheScientificWorldJOURNAL 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5763760/
https://www.ncbi.nlm.nih.gov/pubmed/20661536
http://dx.doi.org/10.1100/tsw.2010.131
_version_ 1783291945721790464
author Chamulitrat, Walee
author_facet Chamulitrat, Walee
author_sort Chamulitrat, Walee
collection PubMed
description The NADPH oxidase (Nox) family of superoxide- and hydrogen peroxide—producing proteins has been recognized as important for signal transduction that regulates receptor-mediated functions, including cytoskeleton remodeling, cell proliferation, migration, differentiation, and cell death. Nox1 was the first of the Nox catalytic subunits to be cloned and shown to induce tumorigenic conversion of mouse fibroblasts. While Nox1 has been shown to be expressed in human colon and prostate cancers, however, limited studies have demonstrated the involvement of Nox1 in an early step of cell transformation. The aim of this review is to provide an overview on the role of Nox1 in cancer, as well as the contribution of our studies to demonstrate the involvement of Nox1 on neoplastic progression of human keratinocytes beyond the immortalization step. The generation of spindle phenotypes concomitant with anchorage-independent growth and invasiveness will be highlighted and discussed in relation to the possible role of Nox1 in epithelial-mesenchymal transition. Understanding these mechanisms may provide insight into Nox1 and redox signaling components as potential therapeutic targets to inhibit tumor progression.
format Online
Article
Text
id pubmed-5763760
institution National Center for Biotechnology Information
language English
publishDate 2010
publisher TheScientificWorldJOURNAL
record_format MEDLINE/PubMed
spelling pubmed-57637602018-06-03 Role of gp91phox Homolog Nox1 in Induction of Premalignant Spindle Phenotypes of HPV 16 E6/E7—Immortalized Human Keratinocytes Chamulitrat, Walee ScientificWorldJournal Mini-Review Article The NADPH oxidase (Nox) family of superoxide- and hydrogen peroxide—producing proteins has been recognized as important for signal transduction that regulates receptor-mediated functions, including cytoskeleton remodeling, cell proliferation, migration, differentiation, and cell death. Nox1 was the first of the Nox catalytic subunits to be cloned and shown to induce tumorigenic conversion of mouse fibroblasts. While Nox1 has been shown to be expressed in human colon and prostate cancers, however, limited studies have demonstrated the involvement of Nox1 in an early step of cell transformation. The aim of this review is to provide an overview on the role of Nox1 in cancer, as well as the contribution of our studies to demonstrate the involvement of Nox1 on neoplastic progression of human keratinocytes beyond the immortalization step. The generation of spindle phenotypes concomitant with anchorage-independent growth and invasiveness will be highlighted and discussed in relation to the possible role of Nox1 in epithelial-mesenchymal transition. Understanding these mechanisms may provide insight into Nox1 and redox signaling components as potential therapeutic targets to inhibit tumor progression. TheScientificWorldJOURNAL 2010-07-20 /pmc/articles/PMC5763760/ /pubmed/20661536 http://dx.doi.org/10.1100/tsw.2010.131 Text en Copyright © 2010 Walee Chamulitrat. https://creativecommons.org/licenses/by/3.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Mini-Review Article
Chamulitrat, Walee
Role of gp91phox Homolog Nox1 in Induction of Premalignant Spindle Phenotypes of HPV 16 E6/E7—Immortalized Human Keratinocytes
title Role of gp91phox Homolog Nox1 in Induction of Premalignant Spindle Phenotypes of HPV 16 E6/E7—Immortalized Human Keratinocytes
title_full Role of gp91phox Homolog Nox1 in Induction of Premalignant Spindle Phenotypes of HPV 16 E6/E7—Immortalized Human Keratinocytes
title_fullStr Role of gp91phox Homolog Nox1 in Induction of Premalignant Spindle Phenotypes of HPV 16 E6/E7—Immortalized Human Keratinocytes
title_full_unstemmed Role of gp91phox Homolog Nox1 in Induction of Premalignant Spindle Phenotypes of HPV 16 E6/E7—Immortalized Human Keratinocytes
title_short Role of gp91phox Homolog Nox1 in Induction of Premalignant Spindle Phenotypes of HPV 16 E6/E7—Immortalized Human Keratinocytes
title_sort role of gp91phox homolog nox1 in induction of premalignant spindle phenotypes of hpv 16 e6/e7—immortalized human keratinocytes
topic Mini-Review Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5763760/
https://www.ncbi.nlm.nih.gov/pubmed/20661536
http://dx.doi.org/10.1100/tsw.2010.131
work_keys_str_mv AT chamulitratwalee roleofgp91phoxhomolognox1ininductionofpremalignantspindlephenotypesofhpv16e6e7immortalizedhumankeratinocytes