Cargando…

The role of transportation in the spread of Brachyspira hyodysenteriae in fattening farms

BACKGROUND: Direct and indirect contact among animals and holdings are important in the spread of Brachyspira hyodysenteriae. The objective of this study was to investigate the role of slaughterhouse vehicles in spreading B. hyodysenteriae between unconnected farms. RESULTS: Multilocus sequence typi...

Descripción completa

Detalles Bibliográficos
Autores principales: Giacomini, Enrico, Gasparrini, Sara, Lazzaro, Massimiliano, Scali, Federico, Boniotti, Maria Beatrice, Corradi, Attilio, Pasquali, Paolo, Alborali, Giovanni Loris
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5763801/
https://www.ncbi.nlm.nih.gov/pubmed/29321027
http://dx.doi.org/10.1186/s12917-017-1328-5
Descripción
Sumario:BACKGROUND: Direct and indirect contact among animals and holdings are important in the spread of Brachyspira hyodysenteriae. The objective of this study was to investigate the role of slaughterhouse vehicles in spreading B. hyodysenteriae between unconnected farms. RESULTS: Multilocus sequence typing (MLST) and Multiple Locus Variable number tandem repeat Analysis (MLVA) were used to characterize B. hyodysenteriae strains isolated from trucks. Before cleaning, 976 batches of finishing pigs transported by 174 trucks from 540 herds were sampled. After cleaning, 763 of the 976 batches were also sampled. Sixty-one of 976 and 4 of 763 environmental swabs collected from trucks before and after cleaning and disinfection operations, respectively, were positive for B. hyodysenteriae. The 65 isolates in this study originated from 48 farms. Trucks were classified into five categories based on the number of visited farms as follows: category 1: 1–5 farms, category 2: 6–10 farms, category 3: 11–15 farms, category 4: 16–20 farms, category 5: >21 farms. Although the largest number of vehicles examined belonged to category 1, the highest percentage of vehicles positive for B. hyodysenteriae was observed in categories 3, 4 and 5. Specifically, 90.9% of trucks belonging to category 5 were positive for B. hyodysenteriae, followed by categories 4 and 3 with 85.7% and 83.3%, respectively. The results of MLST and MLVA suggest that trucks transporting pigs from a high number of farms also play a critical role in spreading different B. hyodysenteriae genetic profiles. STVT 83–3, which seems to be the current dominant type in Italy, was identified in 56.25% of genotyped isolates. The genetic diversity of isolated strains from trucks was high, particularly, in truck categories 3, 4 and 5. This result confirmed that MLST and MLVA can support the study of epidemiological links between different B. hyodysenteriae farm strains. CONCLUSIONS: This study highlights the potential role of shipments in B. hyodysenteriae spread. Moreover, it emphasizes the importance of strict vehicle hygiene practices for biosecurity programmes.